hdu 6201 transaction transaction transaction

本文介绍了一个基于图论的算法问题,旨在寻找商人Kelukin在不同城市间买卖书籍以获得最大利润的最优路径。通过构建特殊的源点和汇点,并利用SPFA算法,解决了带有成本的交易问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transaction transaction transaction

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)
Total Submission(s): 1244    Accepted Submission(s): 595


Problem Description
Kelukin is a businessman. Every day, he travels around cities to do some business. On August 17th, in memory of a great man, citizens will read a book named "the Man Who Changed China". Of course, Kelukin wouldn't miss this chance to make money, but he doesn't have this book. So he has to choose two city to buy and sell. 
As we know, the price of this book was different in each city. It is  ai   yuan  in  i t  city. Kelukin will take taxi, whose price is  1 yuan  per km and this fare cannot be ignored.
There are  n1  roads connecting  n  cities. Kelukin can choose any city to start his travel. He want to know the maximum money he can get.
 

Input
The first line contains an integer  T  ( 1T10 ) , the number of test cases. 
For each test case:
first line contains an integer  n  ( 2n100000 ) means the number of cities;
second line contains  n  numbers, the  i th  number means the prices in  i th  city;  (1Price10000)  
then follows  n1  lines, each contains three numbers  x y  and  z  which means there exists a road between  x  and  y , the distance is  z km   (1z1000)
 

Output
For each test case, output a single number in a line: the maximum money he can get.
 

Sample Input
  
1 4 10 40 15 30 1 2 30 1 3 2 3 4 10
 

Sample Output
  
8
 

Source
 

Recommend
liuyiding


最长路 。。
建立两个新的点。
一个叫做源点,一个是汇点。
然后在这两点间最长的路就是答案了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define inf 0x3f3f3f3f
#define N 100005
#define mem(a,x) memset(a,x,sizeof(a))
struct data
{
    int to;
    int cost;
};
int n;
int dis[N];
int vis[N];
int Point[N];
vector<data>v[N];
void init()
{
    for(int i=0; i<N; i++)
        v[i].clear();
}
int add(int a,int b,int c)
{
    data tmp;
    tmp.cost=c;
    tmp.to=b;
    v[a].push_back(tmp);
}
void spfa(int u)
{
    memset(vis,0,sizeof(vis));
    memset(dis,-inf,sizeof(dis));
    queue<int>q;
    vis[u]=1;
    q.push(u);
    dis[u]=0;
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        vis[u]=0;
        int len=v[u].size();
        for(int i=0; i<len; i++)
        {
            int to=v[u][i].to;
            int cost=v[u][i].cost;
            int tmp=dis[u]+cost;
            if(tmp>dis[to])
            {
                dis[to]=tmp;
                if(!vis[to])
                {
                    vis[to]=1;
                    q.push(to);
                }
               // printf("--%d\n",u);
            }
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        init();
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&Point[i]);
        }
        Point[0]=Point[n+1]=0;
        for(int i=1; i<=n; i++)
        {
            add(0,i,-2);///为新建源点与各点的边赋值
            add(i,n+1,2);///为新建汇点与各点的边赋值  距离随便填了,,只要对称就好
        }
        int x,y,c;
        for(int i=1; i<n; i++)
        {
            scanf("%d%d%d",&x,&y,&c);
            add(x,y,Point[y]-Point[x]-c);
            add(y,x,Point[x]-Point[y]-c);
        }
        spfa(0);
        //printf("---------\n");
        /*for(int i=0;i<=n+1;i++)
        {
            printf("%d ",dis[i]);
        }
        printf("\n");*/
        printf("%d\n",dis[n+1]);
    }
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值