AcWing 789 数的范围

本文深入讲解二分查找算法,特别针对在已排序数组中查找特定元素的起始和终止位置问题,提供两种二分查找实现方式,帮助读者理解并避免常见陷阱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。

对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。

如果数组中不存在该元素,则返回“-1 -1”。

输入格式

第一行包含整数n和q,表示数组长度和询问个数。

第二行包含n个整数(均在1~10000范围内),表示完整数组。

接下来q行,每行包含一个整数k,表示一个询问元素。

输出格式

共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回“-1 -1”。

数据范围

1≤n≤100000
1≤q≤10000
1≤k≤10000

输入样例:

6 3
1 2 2 3 3 4
3
4
5

输出样例:

3 4
5 5
-1 -1

分析:

本题是练习二分很好的一道题目,二分程序虽然简单,但是如果写之前不考虑好想要查找的是什么,十有八九会是死循环或者查找错误,就算侥幸写对了也只是运气好而已。用二分去查找元素要求数组的有序性或者拥有类似于有序的性质,对本题而言,一个包含重复元素的有序序列,要求输出某元素出现的起始位置和终止位置,翻译一下就是:在数组中查找某元素,找不到就输出-1,找到了就输出不小于该元素的最小位置和不大于该元素的最大位置。所以,需要写两个二分,一个需要找到>=x的第一个数,另一个需要找到<=x的最后一个数。

查找不小于x的第一个位置,较为简单:

int l = 0, r = n - 1;
while (l < r) {
	int mid = l + r >> 1;
	if (a[mid] < x)  l = mid + 1;
	else    r = mid;
}

 当a[mid]小于x时,令l = mid + 1,mid及其左边的位置被排除了,可能出现解的位置是mid + 1及其后面的位置;当a[mid] >= x时,说明mid及其左边可能含有值为x的元素;当查找结束时,l与r相遇,l所在元素若是x则一定是x出现最小位置,因为l左边的元素必然都小于x。

查找不大于x的最后一个位置,便不容易了:

int l1 = l, r1 = n;
while (l1 + 1 < r1) {
	int mid = l1 + r1 >> 1;
	if (a[mid] <= x)  l1 = mid;
	else    r1 = mid;
}

 要查找不大于x的最后一个位置,当a[mid] <= x时,待查找元素只可能在mid及其后面,所以l = mid;当a[mid] > x时,待查找元素只会在mid左边,令r = mid,为什么不令r = mid - 1呢?因为如果按照上一个二分的写法,循环判断条件还是l < r,当只有两个元素比如2 2时,l指向第一个元素,r指向第二个元素,mid指向第一个元素,a[mid] <= x,l = mid还是指向第一个元素,指针不移动了,陷入死循环了,此刻l + 1 == r,未能退出循环,那么直接把循环判断条件改成l + 1 < r呢?此时一旦只有两个元素,l和r差1,循环便不再执行,查找错误。所以这里出现了二分的典型错误,l == r作为循环终止条件,会出现死循环,l + 1 == r作为循环终止条件,会出现查找错误。

问题如何解决,一种方法就是将查找的区间设置为左闭右开,比如待查找元素在[0,n - 1]范围内,可以写成[0,n),令r = n,这时候只有两个元素时,r是取最右边元素的后一个位置的,l和r相差2,还会执行循环。现在再来理解上一段的r1 = mid,说明a[mid] > x时,r = mid就表示待查找元素会是在r的左边,因为r是开区间。上面这种写法修改了循环条件使得二分不会死循环,修改了区间的开闭性使得不会查找错误。

另一种解决办法就是:

int l = 0, r = n - 1;
while (l < r)
 {
        int mid = l + r + 1 >> 1;
        if (a[mid] <= x) l = mid;
        else r = mid - 1;
 }

不修改循环终止条件,想办法解决死循环的问题,首先想下为什么查找不小于x的第一个位置不会死循环?因为这时就算只有两个元素,l + 1 = r,mid = l,a[mid]小于x时l是会+1的,不小于x时r = mid也会缩小区间。而查找不大于x的最后一个位置之所以会死循环是因为编程语言里面除以2的下取整性,试想下如果l + 1 = r时,mid = r的话,一旦a[mid] <= x,l = mid = r,区间缩小,否则r = mid - 1 = l区间缩小,l都会与r相遇,如果做到上取整呢?只需要取mid时在l + r后面再加1即可,这里l和r都是闭区间,所以当a[mid] > x时,r = mid - 1.

是否还有其他办法既不修改区间的开闭性和循环终止条件,又不用上取整呢?答案是肯定的。

int l1 = l, r1 = n - 1;
while (l1 < r1) {
	int mid = l1 + r1 >> 1;
	if (a[mid] <= x)  l1 = mid + 1;
	else    r1 = mid - 1;
}
printf("%d %d\n", l, l1 - (a[l1] == x ? 0 : 1));

 我们之所以会进行第二轮查找不大于x的最后一个位置,是因为第一轮已经找到了一个等于x的位置。所以完全可以当a[mid] <= x时,令l = mid + 1,此时,l指向的元素可能是x也可能比x大,但是由于不论大小,l和r的指针都移动了,就不会陷入死循环了,最后,如果a[l] == x则,l就是x出现的最后的位置,否则,l - 1就是x出现的最后一个位置。或许有人会疑惑,当a[mid] <= x时,l已经右移,最后l不是肯定指向的是大于x的位置嘛,为什么也可能指向等于x的位置?这是因为一旦第一轮查找的x出现的位置就是x唯一出现的位置,当x出现在数组末尾时,l == r,循环不会执行,此刻l指向的还是x,所以加上这个判断就可以解决该问题了。这也是二分程序可能遇见的第三种问题,当左右指针都移动时,待查找元素处在元素末尾会引起查找错误。

总的代码如下:

#include <iostream>
using namespace std;
const int maxn = 100005;
int n, q, x, a[maxn];
int main() {
	scanf("%d%d", &n, &q);
	for (int i = 0; i < n; i++)    scanf("%d", &a[i]);
	while (q--) {
		scanf("%d", &x);
		int l = 0, r = n - 1;
		while (l < r) {
			int mid = l + r >> 1;
			if (a[mid] < x)  l = mid + 1;
			else    r = mid;
		}
		if (a[l] != x) {
			printf("-1 -1\n");
			continue;
		}
		int l1 = l, r1 = n;
		while (l1 + 1 < r1) {
			int mid = l1 + r1 >> 1;
			if (a[mid] <= x)  l1 = mid;
			else    r1 = mid;
		}
		printf("%d %d\n", l, l1);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值