为什么在网络的最后用average pooling layer 代替FC

本文探讨了GlobalAveragePooling层如何作为全连接层的替代方案应用于深度学习网络尾部,特别是解决了参数过多、过拟合及固定输入尺寸的问题。通过全局平均池化操作,不仅减少了参数量,还增强了模型对图像大小变化的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Global Average Pooling一般用于放在网络的最后,用于替换全连接FC层,为什么要替换FC?
因为在使用中,例如alexnet和vgg网络都在卷积和softmax之间串联了fc层,发现有一些缺点:

(1)参数量极大,有时候一个网络超过80~90%的参数量在最后的几层FC层中;
(2)容易过拟合,很多CNN网络的过拟合主要来自于最后的fc层,因为参数太多,却没有合适的regularizer;过拟合导致模型的泛化能力变弱;
(3)实际应用中非常重要的一点,paper中并没有提到:FC要求输入输出是fix的,也就是说图像必须按照给定大小,而实际中,图像有大有小,fc就很不方便;
作者提出了Global Average Pooling,做法很简单,是对每一个单独的feature map取全局average。要求输出的nodes和分类category数量一致,这样后面就可以直接接softmax了。

                          

作者指出,Global Average Pooling的好处有:

  • 因为强行要求最后的feature map数量等于category数量,因此feature map就会被解析为categories confidence maps.
  • 没有参数,所以不会过拟合;
  • 对一个平面的计算,使得利用了空间信息,对于图像在空间中变化更鲁棒;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行者无疆兮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值