扩展kmp
学习资料:
关于扩展kmp:
定义母串S,和子串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extend[i](0<=i<n)。
时间复杂度分析:
下面来分析一下算法的时间复杂度,通过上面的算法介绍可以知道,对于第一种情况,无需做任何匹配即可计算出extend[i],对于第二种情况,都是从未被匹配的位置开始匹配,匹配过的位置不再匹配,也就是说对于母串的每一个位置,都只匹配了一次,所以算法总体时间复杂度是O(n)的,同时为了计算辅助数组next[i]需要先对字串T进行一次拓展kmp算法处理,所以拓展kmp算法的总体复杂度为O(n+m)的。其中n为母串的长度,m为子串的长度。
题型分析:
模板:
#include <bits/stdc++.h>
using namespace std;
const int maxn=100010;
int next[maxn],ex[maxn]; //ex数组即为extend数组
//预处理计算next数组
void getnext(string str)
{
int i=0,j,po,len=str.size();
next[0]=len;//初始化next[0]
while(str[i]==str[i+1]&&i+1<len)//计算next[1]
i++;
next[1]=i;
po=1;//初始化po的位置
for(i=2;i<len;i++)
{
if(next[i-po]+i<next[po]+po)//第一种情况,可以直接得到next[i]的值
next[i]=next[i-po];
else//第二种情况,要继续匹配才能得到next[i]的值
{
j=next[po]+po-i;
if(j<0)j=0;//如果i>po+next[po],则要从头开始匹配
while(i+j<len&&str[j]==str[j+i])//计算next[i]
j++;
next[i]=j;
po=i;//更新po的位置
}
}
}
//计算extend数组
void exkmp(string s1,string s2)
{
int i=0,j,po,len=s1.size(),l2=s2.size();
getnext(s2);//计算子串的next数组
while(s1[i]==s2[i]&&i<l2&&i<len)//计算ex[0]
i++;
ex[0]=i;
po=0;//初始化po的位置
for(i=1;i<len;i++)
{
if(next[i-po]+i<ex[po]+po)//第一种情况,直接可以得到ex[i]的值
ex[i]=next[i-po];
else//第二种情况,要继续匹配才能得到ex[i]的值
{
j=ex[po]+po-i;
if(j<0)j=0;//如果i>ex[po]+po则要从头开始匹配
while(i+j<len&&j<l2&&s1[j+i]==s2[j])//计算ex[i]
j++;
ex[i]=j;
po=i;//更新po的位置
}
}
}
int main()
{
string s1,s2;//s1为母串 s2为子串
cin>>s1>>s2;
exkmp(s1,s2);
for(int i=0;i<s1.size();i++)
cout<<ex[i];
return 0;
}