卷积神经网络

上述神经网络结构包含以下几个层:

  • 输入层:输入图像等信息
  • 卷积层:用来提取图像的底层特征
  • 池化层:防止过拟合,将数据维度减小
  • 全连接层:汇总卷积层和池化层得到的图像的底层特征和信息
  • 输出层:根据全连接层的信息得到概率最大的结果

1 单通道卷积层

2 多通道卷积层

        输入层是一个5 x 5 x 3矩阵,有3个通道。滤波器是3 x 3 x 3矩阵。首先,过滤器中的每个内核分别应用于输入层中的三个通道,并相加;然后,执行三次卷积,产生3个尺寸为3×3的通道。

多通道2D卷积的第一步:滤波器中的每个内核分别应用于输入层中的三个通道。

3 多核卷积层

4 转置卷积(解卷积、反卷积)

5 3D卷积

6 1*1 卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_29377339

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值