fastText具体代码实现过程

本文介绍如何使用fastText进行文本分类任务。fastText是一款基于C++11的开源工具,适用于MacOS或Linux系统,需要Python 2.6及以上版本的支持,并依赖numpy和scipy等库。文中详细展示了fastText的基本安装步骤及命令行参数说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fastText具体代码实现过程

fastText基于Mac OS或者Linux系统构筑,使用 C++11 的特性。需要python 2.6 或者更高版本支持,以及numpy & scipy等软件支持。

示例:

$ git clone https://github.com/facebookresearch/fastText.git
$ cd fastText
$ make
$ ./fasttext supervised
Empty input or output path.
The following arguments are mandatory:
-input training file path
-output output file path
The following arguments are optional:
-lr learning rate [0.05]
-dim size of word vectors [100]
-ws size of the context window [5]
-epoch number of epochs [5]
-minCount minimal number of word occurences [1]
-neg number of negatives sampled [5]
-wordNgrams max length of word ngram [1]
-loss loss function {ns, hs, softmax} [ns]
-bucket number of buckets [2000000]
-minn min length of char ngram [3]
-maxn max length of char ngram [6]
-thread number of threads [12]
-verbose how often to print to stdout [10000]
-t sampling threshold [0.0001]
-label labels prefix [__label__]
$ ./fasttext supervised -input training_file_path -output output_file_path
Read 3M words
Number of words:  846680
Number of labels: 311
Progress: 100.0%  words/sec/thread: 9815  lr: 0.000000  loss: 2.637867  eta: 0h0m 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值