put函数
简述:put函数有两个参数,key和value,实际上还有一个int类型的hash值,是通过key的hashCode与其高16位进行异或运算得到的,首先判断table数组是否存在,如果不存在的化就初始化,默认容量为16,加载因子为0.75(也就是说当达到12时,就会扩容,扩容方法单独说),数组长度减一与运算hash值,得到当前节点应该table数组中的哪个位置,如果为空,就new一个节点,如果不为空,有3种情况,1.hash相同,也就是key相同,那么就覆盖原来的value值,2.当前节点在红黑树上;3.当前节点在链表中(遍历这个链表,将新节点添加到尾部,如果长度大于8,则转换为红黑树,如果在链表中找到了相同的hash,即相同的key,则覆盖原来的value值)
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//计算key的hash值
static final int hash(Object key) {
int h;
//这里说明key可以为null,key.hashCode()这个方法是Object类的方法,跟内存地址有关,
//将key的hash值与hash的高16位进行异或运算,得到这个节点的hash值
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//初始化table,分配内存空间
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//计算hash在数组中的位置:数组长度减一后和hash值进行与运算(得到的结果肯定小于数组长度减一)
//如果这个位置为空,就new一个节点存放hash,key和value
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//这个else包含几种情况
//1:hash相同,key也相同,那么就将旧的value替换成新的value;
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//2:当前节点在红黑树上
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//3:当前节点在链表上
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//key存在,将value覆盖为新值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
大致流程图:
table初始化和扩容
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//扩容为原来的2倍,并判断小于最大容量2的30次方,
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//负载容量也扩大为原来的2倍
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//oldCap = 0 说明还未初始化,下面进行初始化
else { // zero initial threshold signifies using defaults
//容量为默认的16
newCap = DEFAULT_INITIAL_CAPACITY;
//负载容量默认为16 * 0.75 = 12
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//oldTab不为空,说明正在扩容,下面将原来的table中的数据放入新的table中
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//e.next = null说明当前只有一个节点,并不是链表或者是红黑树
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//链表
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}