HDU 1222 Wolf and Rabbit 幸存的兔子

本文详细介绍了HDU 1222 Wolf and Rabbit问题的解决方法,通过理解兔子和狼之间的追逐逻辑,利用最大公约数(GCD)的概念来判断是否存在安全的藏身之处。提供了从暴力搜索到优化算法的逐步解析,并附有代码实现,适合初学者理解和实践。

原题 http://acm.hdu.edu.cn/showproblem.php?pid=1222

题目:

Wolf and Rabbit

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6182 Accepted Submission(s): 3094

Problem Description
There is a hill with n holes around. The holes are signed from 0 to n-1.

A rabbit must hide in one of the holes. A wolf searches the rabbit in anticlockwise order. The first hole he get into is the one signed with 0. Then he will get into the hole every m holes. For example, m=2 and n=6, the wolf will get into the holes which are signed 0,2,4,0. If the rabbit hides in the hole which signed 1,3 or 5, she will survive. So we call these holes the safe holes.

Input
The input starts with a positive integer P which indicates the number of test cases. Then on the following P lines,each line consists 2 positive integer m and n(0 < m,n < 2147483648).

Output
For each input m n, if safe holes exist, you should output “YES”, else output “NO” in a single line.

Sample Input
2
1 2
2 2

Sample Output
NO
YES

思路:

兔子一共有n个窝,狼每次走m步,如果一直不会找到兔子,输出YES。

暴力解决就是开一个长度为n的数组arr[],每到一个点相应的数组非0,直到到了一个非0点,再遍历是否存在0点。
但是本题的n却很大。显然,暴力是解决不了问题的。

多次模拟我们可以发现,如果m和n有公因子为1,因为mn互质。
假如m>n,那么第一次跑完一圈的起点应该是m%n,第二次是(m+m%n)%n,由取模的公式可知:
(a+b)%c=(a%c+b%c)%c,所以第二次的结果是(2m)%n,第n次是mn%n=0,即到第n圈我们才回到原点,这样在地图上的所有点都已经被取完。
当n>m,同理也可得n圈后回到原点。
所以只需要满足mn的最大公约数为1即可。
代码实现如下:

代码:

#include <iostream>
using namespace std;
typedef long long int lint;

int gcd(int m,int n)
{
    if(m%n==0)   return n;
    else    return  gcd(n,m%n);
}
int main()
{
    lint m,n;
    int x;
    cin>>x;
    while(x--)
    {
        cin>>m>>n;
        if(gcd(m,n)==1)
        {
            cout<<"NO"<<endl;
        }
        else
        {
            cout<<"YES"<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值