1.python适合发开的应用类型:网络应用(网站,后台服务),日常小工具(系统管理员需要的脚本任务),把其他语言开发的程 序包装起来。
2.python是解释性语言,执行效率低,代码不能加密,发布程序必须以源码形式。
3.打印遇到“,” 逗号会打印一个空格。
4.在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码。
5.在最新的Python 3版本中,字符串是以Unicode编码的,也就是说,Python的字符串支持多语言。
6.bytes 字节串,每个数据单位是一个字节,如
b5 = "学习Python很有趣".encode('utf-8')
print(b5)
b'\xe5\xad\xa6\xe4\xb9\xa0Python\xe5\xbe\x88\xe6\x9c\x89\xe8\xb6\xa3'
上面的输出如\xe5就表示一个字节,其中\x表示十六进制,e5表示两位十六进制数,也就是表示一个字节。
len()
函数计算的是str
的字符数,如果换成bytes
,len()
函数就计算字节数。
7.格式化输出
占位符 替换内容
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数
'Hello, %s' % 'world'
%
运算符就是用来格式化字符串的。在字符串内部,%s
表示用字符串替换,%d
表示用整数替换,有几个%?
占位符,后面就跟几个变量或者值,顺序要对应好。如果只有一个%?
,括号可以省略。
tips:
(1)如果你不太确定应该用什么,%s
永远起作用,它会把任何数据类型转换为字符串
(2)有些时候,字符串里面的%
是一个普通字符怎么办?这个时候就需要转义,用%%
来表示一个%。如输出%用 %%输出一个%。
(3) 格式字符串时经常使用的是utf-8,如果使用gb2312是纯找麻烦的办法。
8.list (列表)
使用 索引-1 获取最后一个元素,一次类推。
list为可变有序表,可以往list末尾添加元素。append 末尾添加,insert 插入到指定位置。pop()删除末尾元素,pop(i)删除指定位置元素。
list里面的元素的数据类型可不同,也可以包含另外一个lsit,
9.tuple(元组)
一旦初始化就不能更改。
tuple陷阱:
定义长度为1的元组,如果使用t=(1),那就是定义t=1,而不是元组,需要在后面加一个逗号,如t = (1,)。
“可变”的tuple
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a'
,就不能改成指向'b'
,指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!
10.判断语句
if x:
print('True')
只要x
是非零数值、非空字符串、非空list等,就判断为True
,否则为False
。
11.Python提供一个range()
函数,可以生成一个整数序列,如range(100),生成整数序列如下:0,1,.... , 99.
12.dict(字典)
判断key是否存在字典中,使用in或者get
一是通过in判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get()方法,如果key不存在,可以返回None,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None
的时候Python的交互环境不显示结果。
dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
- 查找和插入的速度极快,不会随着key的增加而变慢;
- 需要占用大量的内存,内存浪费多。
而list相反:
- 查找和插入的时间随着元素的增加而增加;
- 占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
dict内部使用的是hash,所以要求key值必须是不可变对象。
13.set(集合)
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}
只表示set中内容为1,2,3,不表示顺序,重复的元素会被过滤掉。
add(key) 添加元素,remove(key)移除元素。
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。
不可变对象
对于不可变对象str进行相关操作后会改变对象吗?
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
不好理解,先把代码改写如下方式,
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a
是变量,而'abc'
才是字符串对象!有些时候,我们经常说,对象a
的内容是'abc'
,但其实是指,a
本身是一个变量,它指向的对象的内容才是'abc'
:
当我们调用a.replace('a', 'A')
时,实际上调用方法replace
是作用在字符串对象'abc'
上的,而这个方法虽然名字叫replace
,但却没有改变字符串'abc'
的内容。相反,replace
方法创建了一个新字符串'Abc'
并返回,如果我们用变量b
指向该新字符串,就容易理解了,变量a
仍指向原有的字符串'abc'
,但变量b
却指向新字符串'Abc'
了:
所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
将tuple类型的(1,2,3)和(1,[2,3])放入dict和set中:
(1,2,3)可以放入dict和set中,因为它是不变的。
(1,[2,3]) 不可以放入dict或set中,因为可以通过list的操作改变其中的内容,对于tuple来说是不变的。可以理解为该形式对于tuple而言,改变list中的值,tuple关注的地址,所以对它来说没有变,而将该tuple作为一个整体放入dict或者set中时关注的是值,如果list改变了,整个值就改变了,所以不能放。
13.函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:
>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1
14.检查变量的类型 isinstance()
isinstance(x, (int, float))
15.
(1.)函数返回多个值其实时返回了一个tuple,按照位置给变量赋值。
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0
>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)
(2.)函数参数类型
缺省参数
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
调用方法时如果只给一个参数,则n=2,若有第二个值则为n。
一是必选参数在前,默认参数在后,否则Python的解释器会报错;
二是如何设置默认参数。当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7)
,意思是,除了name
,gender
这两个参数外,最后1个参数应用在参数age
上,city
参数由于没有提供,仍然使用默认值。
也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin')
,意思是,city
参数用传进去的值,其他默认参数继续使用默认值。
默认参数的坑:
先定义一个函数,传入一个list,添加一个END再返回:
def add_end(L=[]):
L.append('END')
return L
当你正常调用时,结果似乎不错:
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
当你使用默认参数调用时,一开始结果也是对的:
>>> add_end()
['END']
但是,再次调用add_end()时,结果就不对了:
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
解释:Python函数在定义的时候,默认参数L
的值就被计算出来了,即[]
,因为默认参数L
也是一个变量,它指向对象[]
,每次调用该函数,如果改变了L
的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]
了。
tips:定义默认参数要牢记一点:默认参数必须指向不变对象!
修改上面的例子:
def add_end(L=None):
if L is None:
L = []
L.append('END')
return L
>>> add_end()
['END']
>>> add_end()
['END']
编程思想:能设计成不变对象的,尽量设计成不变对象。
可变参数
形式如下:
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数。
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
关键词参数
关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:
>>> person('Michael', 30)
name: Michael age: 30 other: {}
也可以传入任意个数的关键字参数:
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
关键词参数可以扩展函数功能。
和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
当然,上面复杂的调用可以用简化的写法:
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
**extra
表示把extra
这个dict的所有key-value用关键字参数传入到函数的**kw
参数,kw
将获得一个dict,注意kw
获得的dict是extra
的一份拷贝,对kw
的改动不会影响到函数外的extra
。
命名关键字参数
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。
至于到底传入了哪些,就需要在函数内部通过kw检查。
检查是否有city和job参数:
def person(name, age, **kw):
if 'city' in kw:
# 有city参数
pass
if 'job' in kw:
# 有job参数
pass
print('name:', name, 'age:', age, 'other:', kw)
调用者仍可以传入不受限制的关键字参数:
>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。
def person(name, age, *, city, job):
print(name, age, city, job)
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer
如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*
了:
def person(name, age, *args, city, job):
print(name, age, args, city, job)
命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错。
>>> person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: person() takes 2 positional arguments but 4 were given
由于调用时缺少参数名city
和job
,Python解释器把这4个参数均视为位置参数,但person()
函数仅接受2个位置参数。
命名关键字参数可以有缺省值,从而简化调用:
def person(name, age, *, city='Beijing', job):
print(name, age, city, job)
由于命名关键字参数city具有默认值,调用时,可不传入city参数:
>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer
使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*
作为特殊分隔符。如果缺少*
,Python解释器将无法识别位置参数和命名关键字参数:
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass
参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
def f1(a, b, c=0, *args, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)
def f2(a, b, c=0, *, d, **kw):
print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)
在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。
>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}
最神奇的是通过一个tuple和dict,你也可以调用上述函数:
>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}
对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
虽然可以组合多达5种参数,但不要同时使用太多的组合,否则函数接口的可理解性很差。
16.递归
使用递归函数需要注意防止栈溢出。
尾递归
解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
非尾递归
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。
要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
尾递归
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)
函数改成尾递归方式,也会导致栈溢出。
17.切片(slice)
L[0:3]
表示,从索引0
开始取,直到索引3
为止,但不包括索引3
。即索引0
,1
,2
,正好是3个元素。
如果第一个索引是0
,还可以省略:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
既然Python支持L[-1]
取倒数第一个元素,那么它同样支持倒数切片
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1
。
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
字符串'xxx'
也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
Python中符合切片并且常用的有:列表,字符串,元组。
格式:[开头:结束:步长]
开头:当步长>0时,不写默认0。当步长<0时,不写默认-1
结束:当步长>0时,不写默认列表长度加一。当步长<0时,不写默认负的列表长度减一
步长:默认1,>0 是从左往右走,<0是从右往左走(▽)
当步长小于0的时候的情况
>>>a_list = [1, 2, 3, 4, 5, 6, 7]
>>>b_list = a_list[-1:-8:-1]
>>>b_list
[7, 6, 5, 4, 3, 2, 1]
>>>b_list = a_list[::-1]
[7, 6, 5, 4, 3, 2, 1]
18.迭代
当我们使用for
循环时,只要作用于一个可迭代对象,for
循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。判断是否可迭代,方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
迭代遍历字典
遍历key值: for key in dict
遍历value值: for value in d.values()
同时遍历key,value: for k,v in d.items()
Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
for
循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
生成器
>>> isinstance((x for x in range(10)), Iterable)
True
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
为什么list
、dict
、str
等数据类型不是Iterator
?
因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
tips:
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
19.高阶函数
变量指向函数
>>> f = abs
>>> f
<built-in function abs>
>>> f = abs
>>> f(-10)
10
函数名也是变量
函数名其实就是指向函数的变量!对于abs()
这个函数,完全可以把函数名abs
看成变量,它指向一个可以计算绝对值的函数!
>>> abs = 10
>>> abs(-10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'int' object is not callable
把abs指向10后,就无法通过abs(-10)调用该函数了!因为abs这个变量已经不指向求绝对值函数而是指向一个整数10!
传入函数
既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
def add(x, y, f):
return f(x) + f(y)
20.map/reduce
map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
map()
传入的第一个参数是f
,即函数对象本身。由于结果r
是一个Iterator
,Iterator
是惰性序列,因此通过list()
函数让它把整个序列都计算出来并返回一个list。
reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做函数计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
21.filter
和map()
类似,filter()
也接收一个函数和一个序列。和map()
不同的是,filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。(保留的是为true的元素)
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()
这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()
函数返回的是一个Iterator
,也就是一个惰性序列,所以要强迫filter()
完成计算结果,需要用list()
函数获得所有结果并返回list。
用filter求素数
首先,列出从2
开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一个数2
,它一定是素数,然后用2
把序列的2
的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数3
,它一定是素数,然后用3
把序列的3
的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数5
,然后用5
把序列的5
的倍数筛掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不断筛下去,就可以得到所有的素数。
用Python来实现这个算法,可以先构造一个从3
开始的奇数序列:
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
注意这是一个生成器,并且是一个无限序列。
然后定义一个筛选函数:
def _not_divisible(n):
return lambda x: x % n > 0
最后,定义一个生成器,不断返回下一个素数:
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。
由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:
# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break
tips:Iterator
是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。
22.yield 生成器,可以看作是return。
详情:yield详情
23.sorted
Python内置的sorted()
函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
sorted()
函数也是一个高阶函数,它还可以接收一个key
函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
sorted()方法可加连个参数,一个参数为key,可以指向具体的函数,另外一个参数reverse表示是否反转。
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
24.返回函数
函数作为返回值
如果不要求立刻得到计算结果,可以返回某个计算的函数:
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
在函数lazy_sum
中又定义了函数sum
,并且,内部函数sum
可以引用外部函数lazy_sum
的参数和局部变量,当lazy_sum
返回函数sum
时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
当我们调用lazy_sum()
时,每次调用都会返回一个新的函数,即使传入相同的参数:
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
f1()
和f2()
的调用结果互不影响。
闭包
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()
才执行。我们来看一个例子
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1()
,f2()
和f3()
结果应该是1
,4
,9
,但实际结果是:
>>> f1()
9
>>> f2()
9
>>> f3()
9
全部都是9
!原因就在于返回的函数引用了变量i
,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i
已经变成了3
,因此最终结果为9
。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
再看看结果:
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9
一个函数可以返回一个计算结果,也可以返回一个函数。
返回一个函数时,牢记该函数并未执行,返回函数中不要引用任何可能会变化的变量。
25.匿名函数 lambda
匿名函数lambda x: x * x
实际上就是:
def f(x):
return x * x
关键字lambda
表示匿名函数,冒号前面的x
表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return
,返回值就是该表达式的结果。
用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25
26.装饰器
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
>>> def now():
... print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25
函数对象有一个__name__
属性,可以拿到函数的名字:
>>> now.__name__
'now'
>>> f.__name__
'now'
假设我们要增强now()
函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()
函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator。
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
观察上面的log
,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2015-3-25')
调用now()
函数,不仅会运行now()
函数本身,还会在运行now()
函数前打印一行日志:
>>> now()
call now():
2015-3-25
把@log
放到now()
函数的定义处,相当于执行了语句:
now = log(now)
由于log()
是一个decorator,返回一个函数,所以,原来的now()
函数仍然存在(指的应该是括号中的now),只是现在同名的now
变量指向了新的函数,于是调用now()
将执行新函数,即在log()
函数中返回的wrapper()
函数。
wrapper()
函数的参数定义是(*args, **kw)
,因此,wrapper()
函数可以接受任意参数的调用。在wrapper()
函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
这个3层嵌套的decorator用法如下:
@log('execute')
def now():
print('2015-3-25')
执行结果如下:
>>> now()
execute now():
2015-3-25
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
先执行log('execute')
,返回的是decorator
函数,再调用返回的函数,参数是now
函数,返回值最终是wrapper
函数。
还差最后一步。因为我们讲了函数也是对象,它有__name__
等属性,但你去看经过decorator装饰之后的函数,它们的__name__
已经从原来的'now'
变成了'wrapper'
:
>>> now.__name__
'wrapper'
因为返回的那个wrapper()
函数名字就是'wrapper'
,所以,需要把原始函数的__name__
等属性复制到wrapper()
函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__ = func.__name__
这样的代码,Python内置的functools.wraps
就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
或者针对带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
import functools
是导入functools
模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()
的前面加上@functools.wraps(func)
即可。
27.偏函数
Python的functools
模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。这里的偏函数和数学意义上的偏函数不一样。介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。
int()
函数可以把字符串转换为整数,当仅传入字符串时,int()
函数默认按十进制转换:
>>> int('12345')
12345
但int()
函数还提供额外的base
参数,默认值为10
。如果传入base
参数,就可以做N进制的转换(指传入的字符串是按照N进制进行表示的):
>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565
假设要转换大量的二进制字符串,每次都传入int(x, base=2)
非常麻烦,于是,我们想到,可以定义一个int2()
的函数,默认把base=2
传进去:
def int2(x, base=2):
return int(x, base)
这样,我们转换二进制就非常方便了:
>>> int2('1000000')
64
>>> int2('1010101')
85
functools.partial
就是帮助我们创建一个偏函数的,不需要我们自己定义int2()
,可以直接使用下面的代码创建一个新的函数int2
:
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
所以,简单总结functools.partial
的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
注意到上面的新的int2
函数,仅仅是把base
参数重新设定默认值为2
,但也可以在函数调用时传入其他值:
>>> int2('1000000', base=10)
1000000
创建偏函数时,实际上可以接收函数对象、*args
和**kw
这3个参数,当传入:
int2 = functools.partial(int, base=2)
实际上固定了int()函数的关键字参数base
,也就是:
int2('10010')
相当于:
kw = { 'base': 2 }
int('10010', **kw)
当传入:
max2 = functools.partial(max, 10)
实际上会把10
作为*args
的一部分自动加到左边,也就是:
max2(5, 6, 7)
相当于:
args = (10, 5, 6, 7)
max(*args)
结果为10
。
简单总结functools.partial
的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
比如:
>>> import functools
>>> sorted2 = functools.partial(sorted,key=abs)
>>> sorted2([1,-3,5,2,-4])
[1, 2, -3, -4, 5]
28.模块(Module)
为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。
为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。
每一个包目录下面都会有一个__init__.py
的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。__init__.py
可以是空文件,也可以有Python代码,因为__init__.py
本身就是一个模块,而它的模块名就是mycompany
。
自己创建模块时要注意命名,不能和Python自带的模块名称冲突。例如,系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。
Tips:
- 模块名要遵循Python变量命名规范,不要使用中文、特殊字符;
- 模块名不要和系统模块名冲突,最好先查看系统是否已存在该模块,检查方法是在Python交互环境执行
import abc
,若成功则说明系统存在此模块。
任何模块代码的第一个字符串都被视为模块的文档注释;
Python模块的标准文件模板
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
' a test module '
__author__ = 'Michael Liao'
import sys
def test():
args = sys.argv
if len(args)==1:
print('Hello, world!')
elif len(args)==2:
print('Hello, %s!' % args[1])
else:
print('Too many arguments!')
if __name__=='__main__':
test()
第1行和第2行是标准注释,第1行注释可以让这个hello.py
文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;
第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;
第6行使用__author__
变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;
以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。
后面开始就是真正的代码部分。