动态规划之割绳子

利用动态规划方法解决绳子剪成多段后,求各段长度乘积最大值的问题。从最简单情况开始递推,如n<2返回0,n=2返回1,n=3返回2,然后通过公式f(n)=max{f(i)f(n-i)}(i<=n/2)计算更大n值的最优解,避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m]. 请问k[0]k[1]…*k[m]可能的最大乘积是多少?例如,当绳子的长度为8时,我们把它剪成长度分别为2,3,3的三段,此时得到的最大乘积是18.

思路:采用自底向上的动态规划方法。设f(n)代表长度为n的绳子剪成若干段的最大乘积,如果第一刀下去,第一段长度是i,那么剩下的就需要剪n-i,那么f(n)=max{f(i)f(n-i)}。而f(n)的最优解对应着f(i)和f(n-i)的最优解,假如f(i)不是最优解,那么其最优解和f(n-i)乘积肯定大于f(n)的最优解,和f(n)达到最优解矛盾,所以f(n)的最优解对应着f(i)和f(n-i)的最优解。首先,剪绳子是最优解问题,其次,大问题包含小问题,并且大问题的最优解包含着小问题的最优解,所以可以使用动态规划求解问题,并且从小到大求解,把小问题的最优解记录在数组中,求大问题最优解时就可以直接获取,避免重复计算。
    n<2时,由于每次至少减一次,所以返回0。n=2时,只能剪成两个1,那么返回1。n=3时,可以剪成3个1,或者1和2,那么最大乘积是2。当n>3时,就可以使用公式进行求解。
    f(4)=max{f(1)f(3), f(2)f(2)}
    f(5)=max{f(1)f(4), f(2)f(3)}
    ...
    f(n)=max{f(1)f(n-1), f(2)f(n-2), f(3)f(n-3), ..., f(i)(fn-i), ...}

    因为需要保证f(i)f(n-i)不重复,就需要保证i<=n/2,这是一个限制条件,求1~n/2范围内的乘积,得到最大值

package DongtaiGuihua;
//给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m].
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值