Essential Tips and Tricks for Starting Machine Learning with Python

本文提供了进入机器学习领域的实用指南,介绍了必备的基础知识与技能,包括观看教育视频、阅读书籍及在线资源,并推荐了一些必读博客。文章还详细阐述了Python作为首选编程语言的原因,并列举了NumPy、Pandas、Matplotlib等核心库的功能。

“I am a student of computer science/engineering. How do I get into the field of machine learning/deep learning/AI?”

It’s never been easier to get started with machine learning. In addition to structured MOOCs, there is also a huge number of incredible, free resources available around the web. Here are just a few that have helped me:

  1. Start with some cool videos on YouTube. Read a couple of good books or articles. For example, have you read “The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World”? And I can guarantee you’ll fall in love with this cool interactive page about machine learning?

  2. Learn to clearly differentiate between buzzwords first — machine learning, artificial intelligence, deep learning, data science, computer vision, robotics. Read or listen to the talks, given by experts, on each of them. Watch this amazing video by Brandon Rohrer, an influential data scientist. Or this video about the clear definition and difference of various rolesassociated with data science.

  3. Have your goal clearly set for what you want to learn. And then, go and take that Coursera course. Or take the other one from Univ. of Washington, which is pretty good too.

  4. Follow some good blogs : KDnuggets, Mark Meloon’s blog about data science career, Brandon Rohrer’s blog, Open AI’s blog about their research,

Is Python a good language of choice for Machine Learning/AI?

Familiarity and moderate expertise in at least one high-level programming language is useful for beginners in machine learning. Unless you are a Ph.D. researcher working on a purely theoretical proof of some complex algorithm, you are expected to mostly use the existing machine learning algorithms and apply them in solving novel problems. This requires you to put on a programming hat.

There’s a lot of debate on the ‘best language for data science’. While the debate rage, grab a coffee and read this insightful article to get an idea and see your choices. Or, check out this post on KDnuggets. For now, it’s widely believed that Python helps developers to be more productive from development to deployment and maintenance. Python’s syntax is simpler and of a higher level when compared to Java, C, and C++. It has a vibrant community, open-source culture, hundreds of high-quality libraries focused on machine learning, and a huge support base from big names in the industry (e.g. Google, Dropbox, Airbnb, etc.). This article will focus on some essential hacks and tricks in Python focused on machine learning.

Fundamental Libraries to know and master

There are few core Python packages/libraries you need to master for practicing machine learning effectively. Very brief description of those are given below,

Numpy

Short for Numerical Python, NumPy is the fundamental package required for high performance scientific computing and data analysis in the Python ecosystem. It’s the foundation on which nearly all of the higher-level tools such as Pandas and scikit-learn are built. TensorFlow uses NumPy arrays as the fundamental building block on top of which they built their Tensor objects and graphflow for deep learning tasks. Many NumPy operations are implemented in C, making them super fast. For data science and modern machine learning tasks, this is an invaluable advantage.

Pandas

This is the most popular library in the scientific Python ecosystem for doing general-purpose data analysis. Pandas is built upon Numpy array thereby preserving the feature of fast execution speed and offering many data engineering features including:

  • Reading/writing many different data formats

  • Selecting subsets of data

  • Calculating across rows and down columns

  • Finding and filling missing data

  • Applying operations to independent groups within the data

  • Reshaping data into different forms

  • Combing multiple datasets together

  • Advanced time-series functionality

  • Visualization through Matplotlib and Seaborn

Matplotlib and Seaborn

Data visualization and storytelling with your data are essential skills that every data scientist needs to communicate insights gained from analyses effectively to any audience out there. This is equally critical in pursuit of machine learning mastery too as often in your ML pipeline, you need to perform exploratory analysis of the data set before deciding to apply particular ML algorithm.

Matplotlib is the most widely used 2-D Python visualization library equipped with a dazzling array of commands and interfaces for producing publication-quality graphics from your data. Here is an amazingly detailed and rich article on getting you started on Matplotlib.

Seaborn is another great visualization library focused on statistical plotting. It’s worth learning for machine learning practitioners. Seaborn provides an API (with flexible choices for plot style and color defaults) on top of Matplotlib, defines simple high-level functions for common statistical plot types, and integrates with the functionality provided by Pandas. Here is a great tutorial on Seaborn for beginners.


Example of Seaborn plots

Scikit-learn

Scikit-learn is the most important general machine learning Python package you must master. It features various classification, regression, and clustering algorithms, including support vector machines, random forests, gradient boosting, k-means, and DBSCAN, and is designed to inter-operate with the Python numerical and scientific libraries NumPy and SciPy. It provides a range of supervised and unsupervised learning algorithms via a consistent interface. The vision for the library has a level of robustness and support required for use in production systems. This means a deep focus on concerns such as ease of use, code quality, collaboration, documentation, and performance. Look at this gentle introduction to machine learning vocabulary as used in the Scikit-learn universe. Here is another article demonstrating a simple machine learning pipeline method using Scikit-learn.

Some hidden gems of Scikit-learn

Scikit-learn is a great package to master for machine learning beginners and seasoned professionals alike. However, even experienced ML practitioners may not be aware of all the hidden gems of this package which can aid in their task significantly. I am trying to list few of these relatively lesser known methods/interfaces available in scikit-learn.

Pipeline : This can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of steps in processing the data, for example feature selection, normalization and classification. Here is more info about it.

Grid-search : Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as arguments to the constructor of the estimator classes. It is possible and recommended to search the hyper-parameter space for the best cross validation score. Any parameter provided when constructing an estimator may be optimized in this manner. Read more about it here.

Validation curves : Every estimator has its advantages and drawbacks. Its generalization error can be decomposed in terms of bias, variance and noise. The bias of an estimator is its average error for different training sets. The variance of an estimator indicates how sensitive it is to varying training sets. Noise is a property of the data. It is very helpful to plot the influence of a single hyperparameter on the training score and the validation score to find out whether the estimator is overfitting or underfitting for some hyperparameter values. Scikit-learn has a built-in method to help here.

One-hot encoding of categorial data : It is an extremely common data preprocessing task to transform input categorical features in one-in-k binary encodings for using in classification or prediction tasks (e.g. logistic regression with mixed numerical and text features). Scikit-learn offers powerful yet simple methods to accomplish this. They operate directly on Pandas dataframe or Numpy arrays thereby freeing the user to write any special map/apply function for these transformations.

Polynomial feature generation : For countless regression modeling tasks, often it is useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is polynomial features, which can get features’ high-order and interaction terms. Scikit-learn has a ready-made function to generate such higher-order cross-terms from a given feature set and user’s choice of highest degree of polynomial.

Dataset generators : Scikit-learn includes various random sample generators that can be used to build artificial datasets of controlled size and complexity. It has functions for classification, clustering, regression, matrix decomposition, and manifold testing.

Practicing Interactive Machine Learning

Project Jupyter was born out of the IPython Project in 2014 and evolved rapidly to support interactive data science and scientific computing across all major programming languages. There is no doubt that it has left one of the biggest degrees of impact on how a data scientist can quickly test and prototype his/her idea and showcase the work to peers and open-source community.

However, l earning and experimenting with data become truly immersive when user can interactively control the parameters of the model and see the effect (almost) real-time. Most of the common rendering in Jupyter are static.

But you want more control, you want to change variables at the simple swipe of your mouse, not by writing a for-loop. What should you do? You can use IPython widget.

Widgets are eventful python objects that have a representation in the browser, often as a control like a slider, text box, etc., through a front-end (HTML/JavaScript) rendering channel.

In this article, I demonstrate a simple curve fitting exercise using basic widget controls. In a follow-up article, that is extended further in the realm of interactive machine learning techniques.

Deep Learning Frameworks

This article gloss over some essential tips for jump-starting your journey to the fascinating world of machine learning with Python. It does not cover deep learning frameworks like TensorFlow, Keras, or PyTorch as they merit deep discussion about themselves exclusively. You can read some great articles about them here but we may come back later with a dedicated discussion about these amazing frameworks.

Summary

Thanks for reading this article. Machine learning is currently one of the most exciting and promising intellectual fields, with applications ranging from e-commerce to healthcare and virtually everything in between. There are hypes and hyperbole, but there is also solid research and best practices. If properly learned and applied, this field of study can bring immense intellectual and practical rewards to the practitioner and to her/his professional task.

It’s impossible to cover even a small fraction of machine learning topics in the space of one (or ten) articles. But hopefully, the current article has piqued your interest in the field and given you solid pointers on some of the powerful frameworks, already available in the Python ecosystem, to start your machine learning tasks.


If you have any questions or ideas to share, please contact the author at tirthajyoti[AT]gmail.com. Also you can check author’s GitHub repositories for other fun code snippets in Python, R, or MATLAB and machine learning resources. If you are, like me, passionate about machine learning/data science, please feel free to add me on LinkedIn or follow me on Twitter.

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值