校招全国统一模拟笔试技术类编程题参考题解(六月)

题目:

一闪一闪亮晶晶,满天都是小星星,牛牛晚上闲来无聊,便躺在床上数星星。
牛牛把星星图看成一个平面,左上角为原点(坐标为(1, 1))。现在有n颗星星,他给每颗星星都标上坐标(xi,yi),表示这颗星星在第x行,第y列。
现在,牛牛想问你m个问题,给你两个点的坐标(a1, b1)(a2,b2),表示一个矩形的左上角的点坐标和右下角的点坐标,请问在这个矩形内有多少颗星星(边界上的点也算是矩形内)。
#include "cstdio"
#include "iostream"
#define VAL 1001
int location[VAL][VAL],num[VAL][VAL];  //location用于存储<=x,<=y区域内的星星数目;num用于存储所有星星
int main()
{
    int x ,y;
    int n=0;
    cin >> n;
    for(int i=0;i<n;i++){
        cin >> x;
        cin >> y;
        num[x][y]+=1;
    }//整个扫描的时间复杂度为O(n*2)
    for (int i = 1; i < VAL; ++i) {
        for (int j = 1; j < VAL; ++j) {
            location[i][j] = location[i][j-1]+location[i-1][j]-location[i-1][j-1]+num[i][j];  //扫描n*n次,来记录整个区域内的星星数目
        }
    }
    int m=0;
    int a1,b1,a2,b2;
    cin >> m;
//查询复杂度位O(1)
    for (int i = 0; i < m; ++i) {
        cin >> a1;
        cin >> b1;
        cin >> a2;
        cin >> b2;
        cout << location[a2][b2]+location[a1-1][b1-1]-location[a1-1][b2]-location[a2][b1-1];  //求区域(a1,b1)~(a2,b2)内的星星数目,
//我们只需要通过区域的叠加来计算星星个数
    }
    return 0;
}

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值