POJ 2533 Longest Ordered Subsequence(基础DP)

本文介绍了一种求解最长上升子序列(LIS)的有效算法,并通过C++代码实现了解决方案。该算法利用动态规划思想,定义dp[i]表示以第i个元素结尾的最长上升子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Longest Ordered Subsequence

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4
题目大意:给出一个数字序列,找出它的最长上升子序列LIS。

解题思路:定义dp[i]为以ai为结尾的LIS的长度,则dp[i] = max(dp[i],dp[j] + 1)(j < i且aj < ai)。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 1005;

int a[maxn],dp[maxn];

int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 0;i < n;i++){
        scanf("%d",&a[i]);
    }
    int ans = 0;
    for(int i = 0;i < n;i++){
        dp[i] = 1;
        for(int j = 0;j < i;j++){
            if(a[j] < a[i]){
                dp[i] = max(dp[i],dp[j] + 1);
            }
        }
        ans = max(ans,dp[i]);
    }
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值