F - 模数之和
Problem Statement
You are given N positive integers a_1, a_2, ..., a_N.
For a non-negative integer m, let f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N).
Here, X\ mod\ Y denotes the remainder of the division of X by Y.
Find the maximum value of f.
Constraints
- All values in input are integers.
- 2 \leq N \leq 3000
- 2 \leq a_i \leq 10^5
Input
Input is given from Standard Input in the following format:
N
a_1 a_2 ... a_N
Output
Print the maximum value of f.
Sample Input 1
3
3 4 6
Sample Output 1
10
f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10 is the maximum value of f.
Sample Input 2
5
7 46 11 20 11
Sample Output 2
90
Sample Input 3
7
994 518 941 851 647 2 581
Sample Output 3
4527
-
f(m − 1) = (a1 − 1) + (a2 − 1) + · · · + (an − 1)
import java.util.Scanner;
public class Main{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans = 0;
for (int i = 0; i < n; i++) {
ans += sc.nextInt();
}
System.out.println(ans-n);
}
}