题目:从1开始的无限长正整数序列(1,2,3,4,5,...),剖去所有可以写成a^b的数(2<=b<=r),求第n个数是多少。
解析:首先对于每一个r处理出对应容斥的数字,用vector记录下来以降低复杂度。
开始的时候同样像的是二分,超时……看了一篇题解后,考虑序列的性质,向前迭代时是不断收敛的。(具体看代码)
[code]:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<cmath>
#include<cstdlib>
#define pb push_back
using namespace std;
typedef long long LL;
typedef pair<int,int> P;
const double eps = 1e-6;
void divide(int) __attribute__((optimize("O3")));
void preprocess() __attribute__((optimize("O3")));
LL func(LL) __attribute__((optimize("O3")));
void sol() __attribute__((optimize("O3")));
LL n;int r;
vector<P> G[63];
void divide(int n){
int i,j,mx = 0,cnt = 0,tmp = n;
for(i = 2;i*i <= n;i++){
if(n%i) continue;
cnt++;
mx = max(mx,i);
n /= i;
if(n%i==0) return;
}
if(n != 1){
cnt++;
mx = max(mx,n);
}
for(i = mx;i <= 62;i++){
G[i].pb(P(tmp,(cnt&1)?-1:1));
}
}
void preprocess(){
int i,j;
for(i = 2;i <= 62;i++){
divide(i);
}
}
LL func(LL x){
int i,j,a,b;
LL res = x-1;
for(i = 0;i < G[r].size();i++){
a = G[r][i].first;b = G[r][i].second;
res += b*(LL)floor(pow(x+eps,1.0/a)-1);
}
return res;
}
void sol(){
//for(int i = 0;i < G[r].size();i++) printf("%d %d\n",G[r][i].first,G[r][i].second);
LL temp,ans = n;
while(1){
temp = func(ans);
//printf("%I64d %I64d",ans,temp);getchar();
if(temp == n) break;
ans += n-temp;
}
printf("%I64d\n",ans);
}
/*void sol(){
LL lb,rb,mid;
lb = 0,rb = 0x7fffffffffffffff;
while(rb-lb>1){
mid = (lb+rb)>>1;
if(func(mid)<=n) lb = mid;
else rb = mid;
}
printf("%I64d\n",lb);
}*/
int main(){
int i,j,cas;
preprocess();
scanf("%d",&cas);
while(cas--){
scanf("%I64d%d",&n,&r);
sol();
}
return 0;
}