#48. Rotate Image
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
/*
* clockwise rotate
* first reverse up to down, then swap the symmetry
* 1 2 3 7 8 9 7 4 1
* 4 5 6 => 4 5 6 => 8 5 2
* 7 8 9 1 2 3 9 6 3
*/
void rotate(vector<vector<int> > &matrix) {
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
/*
* anticlockwise rotate
* first reverse left to right, then swap the symmetry
* 1 2 3 3 2 1 3 6 9
* 4 5 6 => 6 5 4 => 2 5 8
* 7 8 9 9 8 7 1 4 7
*/
void anti_rotate(vector<vector<int> > &matrix) {
for (auto vi : matrix) reverse(vi.begin(), vi.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
#313. Super Ugly Number
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4.
Note:
(1) 1 is a super ugly number for any given primes.
(2) The given numbers in primes are in ascending order.
(3) 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.
(4) The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> index(primes.size(),0),ugly(n,INT_MAX);
ugly[0]=1;
for(int i=1;i<n;i++)
{
for(int j=0;j<primes.size();j++) ugly[i]=min(ugly[i],ugly[index[j]]*primes[j]);
for(int j=0;j<primes.size();j++) index[j]+=(ugly[i]==(ugly[index[j]]*primes[j]));
}
return ugly[n-1];
}
每一个新的ugly数都是从之前的乘出来的
index[j]表示第j个质数,此时已经乘到第几个数来了。
每次新产生的都是从ugly[index[j]]*primes[j]里面挑选出来,这是最小的几个数备选。