数据结构知识点

前言

数据结构是为实现对计算机数据有效使用的各种数据组织形式,服务于各类计算机操作。不同的数据结构具有各自对应的适用场景,旨在降低各种算法计算的时间与空间复杂度,达到最佳的任务执行效率。

如下图所示,常见的数据结构可分为「线性数据结构」与「非线性数据结构」,具体为:「数组」、「链表」、「栈」、「队列」、「树」、「图」、「散列表」、「堆」

在这里插入图片描述

数组

数组是将相同类型的元素存储于连续内存空间的数据结构,其长度不可变

// 初始化一个长度为 5 的数组 array
int[] array = new int[5];
// 元素赋值
array[0] = 2;
array[1] = 3;
array[2] = 1;
array[3] = 0;
array[4] = 2;

//或者
int[] arr = {2, 3, 1, 0, 2};

在这里插入图片描述
可变数组」是经常使用的数据结构,其基于数组和扩容机制实现,相比普通数组更加灵活。常用操作有:访问元素、添加元素、删除元素。

// 初始化可变数组
List<Integer> array = new ArrayList<>();

// 向尾部添加元素
array.add(2);
array.add(3);

链表

链表以节点为单位,每个元素都是一个独立对象,在内存空间的存储是非连续的。链表的节点对象具有两个成员变量:「值 val」,「后继节点引用 next」

class ListNode {
    int val; // 节点值
    ListNode next; // 后继节点引用

    ListNode(int x) {
        this.val = x;
    }
}
// 实例化节点
ListNode n1 = new ListNode(4);
ListNode n2 = new ListNode(5);
ListNode n3 = new ListNode(1);

// 构建引用指向
n1.next = n2;
n2.next = n3;

在这里插入图片描述

在这里插入图片描述

栈是一种具有 「先入后出」 特点的抽象数据结构,可使用数组或链表实现

Stack<Integer> stack = new Stack<>();
stack.push(1); // 元素 1 入栈
stack.push(2); // 元素 2 入栈
stack.pop(); // 出栈 -> 元素 2
stack.pop(); // 出栈 -> 元素 1

// 有些类似洗盘子,先放进水池的盘子最后洗

在这里插入图片描述
注意:通常情况下,不推荐使用 Java 的 Vector 以及其子类 Stack ,而一般将 LinkedList 作为栈来使用。详细请度娘:Stack,ArrayDeque,LinkedList 的区别 。

LinkedList<Integer> stack = new LinkedList<>();

stack.addLast(1);   // 元素 1 入栈
stack.addLast(2);   // 元素 2 入栈
stack.removeLast(); // 出栈 -> 元素 2
stack.removeLast(); // 出栈 -> 元素 1

队列

队列是一种具有 「先入先出」 特点的抽象数据结构,可使用链表实现
通过常用操作「入队 push()」,「出队 pop()」,展示了队列的先入先出特性

Queue<Integer> queue = new LinkedList<>();
queue.add(1); // 元素 1 入队
queue.add(2); // 元素 2 入队
queue.poll(); // 出队 -> 元素 1
queue.poll(); // 出队 -> 元素 2

在这里插入图片描述

树是一种非线性数据结构,根据子节点数量可分为 「二叉树」 和 「多叉树」,最顶层的节点称为「根节点 root」。以二叉树为例,每个节点包含三个成员变量:「值 val」、「左子节点 left」、「右子节点 right」 。

class TreeNode {
    int val; // 节点
    TreeNode left; // 左子节点
    TreeNode right; // 右子节点

    TreeNode(int x) {
        this.val = x;
    }
}

 // 初始化节点
 TreeNode n1 = new TreeNode(3); // 根节点 root
 TreeNode n2 = new TreeNode(4);
 TreeNode n3 = new TreeNode(5);
 TreeNode n4 = new TreeNode(1);
 TreeNode n5 = new TreeNode(2);

 // 构建引用指向
 n1.left = n2;
 n1.left = n3;
 n2.left = n4;
 n2.right = n4;

在这里插入图片描述

图是一种非线性数据结构,由「节点(顶点)vertex」和「边 edge」组成,每条边连接一对顶点。根据边的方向有无,图可分为「有向图」和「无向图」。本文 以无向图为例 开展介绍。

如下图所示,此无向图的 顶点 和 边 集合分别为:

  • 顶点集合: vertices = {1, 2, 3, 4, 5}
  • 边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}
    在这里插入图片描述

表示图的方法通常有两种:

  • 邻接矩阵: 使用数组 verticesvertices 存储顶点,邻接矩阵 edgesedges 存储边; edges[i][j]代表节点 i + 1和 节点 j + 1之间是否有边。
    在这里插入图片描述
int[] vertices = {1, 2, 3, 4, 5};
int[][] edges = {{0, 1, 1, 1, 1},
                 {1, 0, 0, 1, 0},
                 {1, 0, 0, 0, 1},
                 {1, 1, 0, 0, 1},
                 {1, 0, 1, 1, 0}};
  • 邻接表: 使用数组 verticesvertices 存储顶点,邻接表 edgesedges 存储边。 edgesedges 为一个二维容器,第一维 ii 代表顶点索引,第二维 edges[i]存储此顶点对应的边集和;例如 edges[0] = [1, 2, 3, 4]代表 vertices[0]的边集合为 [1, 2, 3, 4] 。
int[] vertices = {1, 2, 3, 4, 5};
List<List<Integer>> edges = new ArrayList<>();

List<Integer> edge_1 = new ArrayList<>(Arrays.asList(1, 2, 3, 4));
List<Integer> edge_2 = new ArrayList<>(Arrays.asList(0, 3));
List<Integer> edge_3 = new ArrayList<>(Arrays.asList(0, 4));
List<Integer> edge_4 = new ArrayList<>(Arrays.asList(0, 1, 4));
List<Integer> edge_5 = new ArrayList<>(Arrays.asList(0, 2, 3));
edges.add(edge_1);
edges.add(edge_2);
edges.add(edge_3);
edges.add(edge_4);
edges.add(edge_5);

在这里插入图片描述

邻接矩阵 VS 邻接表 :
邻接矩阵的大小只与节点数量有关,即 N^2,其中 N 为节点数量。因此,当边数量明显少于节点数量时,使用邻接矩阵存储图会造成较大的内存浪费。
因此,邻接表 适合存储稀疏图(顶点较多、边较少); 邻接矩阵 适合存储稠密图(顶点较少、边较多)

散列表

散列表是一种非线性数据结构,通过利用 Hash 函数将指定的「键 key」映射至对应的「值 value」,以实现高效的元素查找。

设想一个简单场景:小力、小特、小扣的学号分别为 10001, 10002, 10003 。
现需求从「姓名」查找「学号」。

则可通过建立姓名为 key ,学号为 value 的散列表实现此需求,代码如下

Map<String, Integer> dic = new HashMap<>();
// 添加 key -> value 键值对
dic.put("小力", 10001);
dic.put("小特", 10002);
dic.put("小扣", 10003);

在这里插入图片描述

堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。

完全二叉树定义: 设二叉树深度为 kk ,若二叉树除第 kk 层外的其它各层(第 11 至 k-1k−1 层)的节点达到最大个数,且处于第 kk 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。

如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。

在这里插入图片描述
通过使用「优先队列」的「压入 push()」和「弹出 pop()」操作,即可完成堆排序,实现代码如下:

// 初始化小顶堆
Queue<Integer> heap = new PriorityQueue<>();

// 元素入堆
heap.add(1);
heap.add(4);
heap.add(2);
heap.add(6);
heap.add(8);

// 元素出堆(从小到大)
heap.poll(); // -> 1
heap.poll(); // -> 2
heap.poll(); // -> 4
heap.poll(); // -> 6
heap.poll(); // -> 8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值