这道题知道怎么构图之后就不难了,然而我一开始并没有想出来怎么构图,之后看了题解。大概理解了图是怎么建的,按照题解的套路写完A掉后也没有仔细去思考到底是怎样如此简洁地构图的。但是学会了一种思路,这个也是从那篇题解中看到的:
在面对网络流问题时,如果一时想不出很好的构图方法,不如先构造一个最直观,或者说最“硬来”的模型,然后再用合并节点和边的方法来简直化这个模型。经过简化以后,好的构图思路自然就会涌现出来了。这是解决网络流问题的一个好方法。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#define INF (1<<25)
using namespace std;
int n, m, beg[1005], maxbuy[105], firbuy[1005];
vector <int> pighou[1005];
struct Edge {int u, v, flow, cap;};
struct Dinic
{
int s, t, e, d[111], cur[111];
vector <int> G[111];
Edge E[22222];
void addedge (int u, int v, int cap)
{
G[u].push_back(e), G[v].push_back(e+1);
E[e].u = u, E[e].v = v, E[e++].cap = cap;
E[e].u = v, E[e].v = u, E[e++].cap = 0;
}
bool BFS ()
{
memset (d, -1, sizeof d);
queue <int> q;
q.push(s); d[s] = 0;
while (!q.empty())
{
int u = q.front(); q.pop();
for (int i = G[u].size()-1; i >= 0; i--)
{
Edge e0 = E[G[u][i]];
if (d[e0.v] < 0 && e0.flow < e0.cap)
d[e0.v] = d[u]+1, q.push(e0.v);
}
}
return d[t] >= 0;
}
int DFS (int u, int flow)
{
if (u == t || !flow) return flow;
int f1 = 0, f2;
for (int &i = cur[u]; i >= 0; i--)
{
Edge &e1 = E[G[u][i]];
Edge &e2 = E[G[u][i]^1];
if (d[e1.v] != d[u] + 1) continue;
f2 = DFS(e1.v,min(flow,e1.cap-e1.flow));
if (f2 > 0)
f1 += f2, e1.flow += f2,
flow -= f2, e2.flow -= f2;
if (!flow) break;
}
return f1;
}
void work ()
{
int mxf = 0;
while (BFS())
{
for (int i = s; i <= t; i++) cur[i] = G[i].size()-1;
mxf += DFS(s,1<<30);
}
printf ("%d\n", mxf);
}
}Solve;
void ReadinData ()
{
scanf ("%d %d", &m, &n);
for (int i = 1; i <= m; i++) scanf ("%d", beg+i);
for (int i = 1; i <= n; i++)
{
int num, tmp; scanf ("%d", &num);
for (int j = 1; j <= num; j++)
{
scanf ("%d", &tmp);
pighou[tmp].push_back(i);
if (!firbuy[tmp]) firbuy[tmp] = i;
}
scanf ("%d", maxbuy+i);
}
}
void BuildGraph ()
{
Solve.s = 0, Solve.t = n+1;
for (int i = 1; i <= m; i++) Solve.addedge(Solve.s,firbuy[i],beg[i]);
for (int i = 1; i <= n; i++) Solve.addedge(i,Solve.t,maxbuy[i]);
for (int i = 1; i <= m; i++)
for (int j = pighou[i].size()-1; j > 0; j--)
Solve.addedge(pighou[i][j-1],pighou[i][j],INF);
}
int main ()
{
ReadinData();
BuildGraph();
Solve.work();
return 0;
}