用LSTM实现手写图片的数字识别
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
lr = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28 # 输入的是每一行有28个像素
n_steps = 28 # 一共有28行,图片28x28
n_hidden_units = 128
n_classes = 10 # 10分类
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
weights = {
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
def rnn(x_input, weights_input, biases_input):
x = tf.reshape(x_input, [-1, n_inputs])
x_in = tf.matmul(x, weights_input['in'] + biases_input['in'])
x_in = tf.reshape(x_in, [-1, n_steps, n_hidden_units])
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
_init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, states = tf.nn.dynamic_rnn(lstm_cell, x_in, initial_state=_init_state, time_major=False)
results = tf.matmul(states[1], weights_input['out']) + biases_input['out']
return results
pred = rnn(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
step = 0
while step*batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run(
[train_op], feed_dict={x: batch_xs, y: batch_ys}
)
if step % 20 == 0:
print(sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys
}))
step += 1