tensorflow:scope 命名方法

遇到问题

在使用cleverhans这个对抗工程时https://github.com/tensorflow/cleverhans,想把他给的网络结构改成自己的网络结构,然后进行攻击和防御时,一直遇到关于tensorflow命名变量的问题,特此来记录下

两种命名空间

tf.name_scope()

在 Tensorflow 当中有两种途径生成变量 variable, 一种是 tf.get_variable(), 另一种是 tf.Variable(). 如果在 tf.name_scope() 的框架下使用这两种方式, 结果会如下.

import tensorflow as tf

with tf.name_scope("a_name_scope"):
    initializer = tf.constant_initializer(value=1)
    var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32, initializer=initializer)
    var2 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
    var21 = tf.Variable(name='var2', initial_value=[2.1], dtype=tf.float32)
    var22 = tf.Variable(name='var2', initial_value=[2.2], dtype=tf.float32)


with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(var1.name)        # var1:0
    print(sess.run(var1))   # [ 1.]
    print(var2.name)        # a_name_scope/var2:0
    print(sess.run(var2))   # [ 2.]
    print(var21.name)       # a_name_scope/var2_1:0
    print(sess.run(var21))  # [ 2.0999999]
    print(var22.name)       # a_name_scope/var2_2:0
    print(sess.run(var22))  # [ 2.20000005]

可以看出使用 tf.Variable() 定义的时候, 虽然 name 都一样, 但是为了不重复变量名, Tensorflow 输出的变量名并不是一样的. 所以, 本质上 var2, var21, var22 并不是一样的变量. 而另一方面, 使用tf.get_variable()定义的变量不会被tf.name_scope()当中的名字所影响.

tf.variable_scope()

如果想要达到重复利用变量的效果, 我们就要使用 tf.variable_scope(), 并搭配 tf.get_variable() 这种方式产生和提取变量. 不像 tf.Variable() 每次都会产生新的变量, tf.get_variable() 如果遇到了同样名字的变量时, 它会单纯的提取这个同样名字的变量(避免产生新变量). 而在重复使用的时候, 一定要在代码中强调 scope.reuse_variables(), 否则系统将会报错, 以为你只是单纯的不小心重复使用到了一个变量.

with tf.variable_scope("a_variable_scope") as scope:
    initializer = tf.constant_initializer(value=3)
    var3 = tf.get_variable(name='var3', shape=[1], dtype=tf.float32, initializer=initializer)
    scope.reuse_variables()
    var3_reuse = tf.get_variable(name='var3',)
    var4 = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32)
    var4_reuse = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32)
    
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(var3.name)            # a_variable_scope/var3:0
    print(sess.run(var3))       # [ 3.]
    print(var3_reuse.name)      # a_variable_scope/var3:0
    print(sess.run(var3_reuse)) # [ 3.]
    print(var4.name)            # a_variable_scope/var4:0
    print(sess.run(var4))       # [ 4.]
    print(var4_reuse.name)      # a_variable_scope/var4_1:0
    print(sess.run(var4_reuse)) # [ 4.]

项目中的解决方法

在tutorial_models.py中这样改就可以,且要保证每个变量的名字不一样,因为get_variable如果遇到同名变量,会单纯提取同样名字的变量

def fprop(self, x, **kwargs):
    del kwargs
    parameters = []
    # 第一层
    with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
        kernel = tf.get_variable(name='kernel1', shape=[3, 9,CHANNELS,40], initializer=tf.truncated_normal_initializer(stddev=0.1))
        biases1 = tf.get_variable('bias1', [40], initializer=tf.constant_initializer(0.1))

参考

https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-12-scope/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值