按照分析的u-boot的启动流程,自己写一个简单的Bootloader。这是参考韦东山老师的视频写的。闲着没啥事玩玩~~~~~~
编写思路:
1、初始化硬件:关看门狗、设置时钟、设置SDRAM、初始化NAND Flash
2、如果Bootloader比较大,要重定位到SDRAM
3、把内核从NAND FLASH读入SDRAM
4、设置要传给内核的参数
5、跳转执行内核
start.S文件:启动流程代码
bootloader启动的第一阶段:
1. 关闭看门狗
2. 设置时钟频率,设置分频系数等
3. 初始化SDRAM, 因为需要快速启动,所以需要将代码从flash上拷贝到内存SDRAM中启动
4. 代码重定向 (注意nor启动和nand启动的不同点)
5. 执行main函数,跳转到启动的第二阶段
#define S3C2440_MPLL_200MHZ ((0x5c<<12)|(0x01<<4)|(0x02))
#define S3C2440_MPLL_400MHZ ((0x5c<<12)|(0x01<<4)|(0x01))
#define MEM_CTL_BASE 0x48000000
.text
.global _start
_start:
/* 1. 关看门狗 */
ldr r0, =0x53000000
mov r1, #0
str r1, [r0]
/* 2. 设置时钟 */
ldr r0, =0x4c000014
// mov r1, #0x03; // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1
mov r1, #0x05; // FCLK:HCLK:PCLK=1:4:8
str r1, [r0]
/* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
mrc p15, 0, r1, c1, c0, 0 /* 读出控制寄存器 */
orr r1, r1, #0xc0000000 /* 设置为“asynchronous bus mode” */
mcr p15, 0, r1, c1, c0, 0 /* 写入控制寄存器 */
/* MPLLCON = S3C2440_MPLL_200MHZ */
ldr r0, =0x4c000004
ldr r1, =S3C2440_MPLL_400MHZ
str r1, [r0]
/* 启动ICACHE, 开启ICACHE将加快启动速度 */
mrc p15, 0, r0, c1, c0, 0 @ read control reg
orr r0, r0, #(1<<12)
mcr p15, 0, r0, c1, c0, 0 @ write it back
/* 3. 初始化SDRAM */
ldr r0, =MEM_CTL_BASE
adr r1, sdram_config /* sdram_config的当前地址 */
add r3, r0, #(13*4)
1:
ldr r2, [r1], #4
str r2, [r0], #4
cmp r0, r3
bne 1b
/* 4. 重定位 : 把bootloader本身的代码从flash复制到它的链接地址去 */
ldr sp, =0x34000000 /* 将SP放在SDRAM的最高地址处,堆栈式满递减堆栈。在调用C函数之前,必须设置好堆栈 */
bl nand_init //运行init.c的nand_init(void)
mov r0, #0
ldr r1, =_start /* _start是起始地址,是链接地址, 由链接文件.lds 指定 */
ldr r2, =__bss_start /* __bss_start 同样是链接地址,在链接文件中指定 */
sub r2, r2, r1
/*
* copy_code_to_sdram: 被调用的C函数,
* 第一个参数是R0:表示拷贝数据的源地址,这里从0地址(源地址)处拷贝数据到链接地址(真正运行的地址,也就是目的地址)
* 第二个参数是R1:表示拷贝数据的目的地址,就是链接地址
* 第三个参数是R2:表示拷贝数据的长度 = bss段起始地址 - 链接的起始地址。(都在链接文件中定义。)
*/
bl copy_code_to_sdram //运行init.c的copy_code_to_sdram
/*
* 由上面的拷贝代码知道,在bss段中的数据并没有拷贝到内存当中去,这是因为这些数据初始化都是0,所以只需要在初始化的时候,显示的把bss段清零,就OK了。
*/
bl clear_bss
/* 5. 执行main */
ldr lr, =halt
ldr pc, =main //跳到boot.c的main执行
halt:
b halt
sdram_config:
.long 0x22011110 //BWSCON
.long 0x00000700 //BANKCON0
.long 0x00000700 //BANKCON1
.long 0x00000700 //BANKCON2
.long 0x00000700 //BANKCON3
.long 0x00000700 //BANKCON4
.long 0x00000700 //BANKCON5
.long 0x00018005 //BANKCON6
.long 0x00018005 //BANKCON7
.long 0x008C04F4 // REFRESH
.long 0x000000B1 //BANKSIZE
.long 0x00000030 //MRSRB6
.long 0x00000030 //MRSRB7
链接文件 boot.lds:
SECTIONS {
. = 0x33f80000;
.text : { *(.text) }
. = ALIGN(4);
.rodata : {*(.rodata*)}
. = ALIGN(4);
.data : { *(.data) }
. = ALIGN(4);
__bss_start = .;
.bss : { *(.bss) *(COMMON) }
__bss_end = .;
}
Makefile:
CC = arm-linux-gcc
LD = arm-linux-ld
AR = arm-linux-ar
OBJCOPY = arm-linux-objcopy
OBJDUMP = arm-linux-objdump
CFLAGS := -Wall -O2
CPPFLAGS := -nostdinc -nostdlib -fno-builtin
objs := start.o init.o boot.o
boot.bin: $(objs)
${LD} -Tboot.lds -o boot.elf $^
${OBJCOPY} -O binary -S boot.elf $@
${OBJDUMP} -D -m arm boot.elf > boot.dis
%.o:%.c
${CC} $(CPPFLAGS) $(CFLAGS) -c -o $@ $<
%.o:%.S
${CC} $(CPPFLAGS) $(CFLAGS) -c -o $@ $<
clean:
rm -f *.o *.bin *.elf *.dis
boot.c
#include "setup.h"
extern void uart0_init(void);
extern void nand_read(unsigned int addr, unsigned char *buf, unsigned int len);
extern void puts(char *str);
extern void puthex(unsigned int val);
static struct tag *params;
void setup_start_tag(void)
{
params = (struct tag *)0x30000100; //这里设置了内核参数放置的位置为:0x30000100
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size (tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;阿
params = tag_next (params);
}
void setup_memory_tags(void)
{
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32);
params->u.mem.start = 0x30000000; // 表示起始地址
params->u.mem.size = 64*1024*1024; // 表示内存的大小,这里为64MB
params = tag_next (params);
}
int strlen(char *str)
{
int i = 0;
while (str[i])
{
i++;
}
return i;
}
void strcpy(char *dest, char *src)
{
while ((*dest++ = *src++) != '\0');
}
void setup_commandline_tag(char *cmdline)
{
int len = strlen(cmdline) + 1;
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size = (sizeof (struct tag_header) + len + 3) >> 2; //注意:这里要四字节对齐方式
strcpy (params->u.cmdline.cmdline, cmdline);
params = tag_next (params);
}
void setup_end_tag(void)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
int main(void)
{
void (*theKernel)(int zero, int arch, unsigned int params);
volatile unsigned int *p = (volatile unsigned int *)0x30008000;
/* 0. 帮内核设置串口: 内核启动的开始部分会从串口打印一些信息,但是内核一开始没有初始化串口 */
uart0_init();
/* 1. 从NAND FLASH里把内核读入内存 */
puts("Copy kernel from nand\n\r");
// 从nand flash的地址0x60064处拷贝大小为0x200000的代码到内存地址为0x30008000处。即:从nand flash上拷贝内核到SDRAM中。
nand_read(0x60000+64, (unsigned char *)0x30008000, 0x200000);
// 0x30008000为内核需要运行的开始地址(就是链接地址,在SDRAM当中),0x200000为整个内核的长度大小。
// uImage = 64bytes + zImage; zImage为真正的内核。uImage存在0x60000处。
// 所以zImage的起始地址为:0x60000 + 64
puthex(0x1234ABCD);
puts("\n\r");
puthex(*p);
puts("\n\r");
/* 2. 设置参数 */
puts("Set boot params\n\r");
setup_start_tag();
setup_memory_tags();
setup_commandline_tag("noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0"); // 启动的命令参数
setup_end_tag();
/* 3. 跳转执行 */
puts("Boot kernel\n\r");
theKernel = (void (*)(int, int, unsigned int))0x30008000;
theKernel(0, 362, 0x30000100); // 向内核启动的函数,传递了三个参数,
// 第一个参数为0
// 第二个参数为362, 为机器号
// 第三个参数为0x30000100:这个是内核需要的启动参数的起始地址。内核启动需要从这个地方获取所需的启动参 数,比如内存的起始地址,大小等等。
/*
* mov r0, #0
* ldr r1, =362
* ldr r2, =0x30000100
* mov pc, #0x30008000
*/
puts("Error!\n\r");
/* 如果一切正常, 不会执行到这里 */
return -1;
}
还有个setup.h文件
init:
/* NAND FLASH控制器 */
#define NFCONF (*((volatile unsigned long *)0x4E000000))
#define NFCONT (*((volatile unsigned long *)0x4E000004))
#define NFCMMD (*((volatile unsigned char *)0x4E000008))
#define NFADDR (*((volatile unsigned char *)0x4E00000C))
#define NFDATA (*((volatile unsigned char *)0x4E000010))
#define NFSTAT (*((volatile unsigned char *)0x4E000020))
/* GPIO */
#define GPHCON (*(volatile unsigned long *)0x56000070)
#define GPHUP (*(volatile unsigned long *)0x56000078)
/* UART registers*/
#define ULCON0 (*(volatile unsigned long *)0x50000000)
#define UCON0 (*(volatile unsigned long *)0x50000004)
#define UFCON0 (*(volatile unsigned long *)0x50000008)
#define UMCON0 (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0 (*(volatile unsigned long *)0x50000010)
#define UTXH0 (*(volatile unsigned char *)0x50000020)
#define URXH0 (*(volatile unsigned char *)0x50000024)
#define UBRDIV0 (*(volatile unsigned long *)0x50000028)
#define TXD0READY (1<<2)
void nand_read(unsigned int addr, unsigned char *buf, unsigned int len);
int isBootFromNorFlash(void)
{
volatile int *p = (volatile int *)0;
int val;
val = *p;
*p = 0x12345678;
if (*p == 0x12345678)
{
/* 写成功, 是nand启动 */
*p = val;
return 0;
}
else
{
/* NOR不能像内存一样写 */
return 1;
}
}
void copy_code_to_sdram(unsigned char *src, unsigned char *dest, unsigned int len)
{
int i = 0;
/* 如果是NOR启动 */
if (isBootFromNorFlash())
{
while (i < len)
{
dest[i] = src[i];
i++;
}
}
else
{
//nand_init();
nand_read((unsigned int)src, dest, len);
}
}
void clear_bss(void)
{
extern int __bss_start, __bss_end;
int *p = &__bss_start;
for (; p < &__bss_end; p++)
*p = 0;
}
void nand_init(void)
{
#define TACLS 0
#define TWRPH0 1
#define TWRPH1 0
/* 设置时序 */
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
/* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
NFCONT = (1<<4)|(1<<1)|(1<<0);
}
void nand_select(void)
{
NFCONT &= ~(1<<1);
}
void nand_deselect(void)
{
NFCONT |= (1<<1);
}
void nand_cmd(unsigned char cmd)
{
volatile int i;
NFCMMD = cmd;
for (i = 0; i < 10; i++);
}
void nand_addr(unsigned int addr)
{
unsigned int col = addr % 2048;
unsigned int page = addr / 2048;
volatile int i;
NFADDR = col & 0xff;
for (i = 0; i < 10; i++);
NFADDR = (col >> 8) & 0xff;
for (i = 0; i < 10; i++);
NFADDR = page & 0xff;
for (i = 0; i < 10; i++);
NFADDR = (page >> 8) & 0xff;
for (i = 0; i < 10; i++);
NFADDR = (page >> 16) & 0xff;
for (i = 0; i < 10; i++);
}
void nand_wait_ready(void)
{
while (!(NFSTAT & 1));
}
unsigned char nand_data(void)
{
return NFDATA;
}
void nand_read(unsigned int addr, unsigned char *buf, unsigned int len)
{
int col = addr % 2048;
int i = 0;
/* 1. 选中 */
nand_select();
while (i < len)
{
/* 2. 发出读命令00h */
nand_cmd(0x00);
/* 3. 发出地址(分5步发出) */
nand_addr(addr);
/* 4. 发出读命令30h */
nand_cmd(0x30);
/* 5. 判断状态 */
nand_wait_ready();
/* 6. 读数据 */
for (; (col < 2048) && (i < len); col++)
{
buf[i] = nand_data();
i++;
addr++;
}
col = 0;
}
/* 7. 取消选中 */
nand_deselect();
}
#define PCLK 50000000 // init.c中的clock_init函数设置PCLK为50MHz
#define UART_CLK PCLK // UART0的时钟源设为PCLK
#define UART_BAUD_RATE 115200 // 波特率
#define UART_BRD ((UART_CLK / (UART_BAUD_RATE * 16)) - 1)
/*
* 初始化UART0
* 115200,8N1,无流控
*/
void uart0_init(void)
{
GPHCON |= 0xa0; // GPH2,GPH3用作TXD0,RXD0
GPHUP = 0x0c; // GPH2,GPH3内部上拉
ULCON0 = 0x03; // 8N1(8个数据位,无较验,1个停止位)
UCON0 = 0x05; // 查询方式,UART时钟源为PCLK
UFCON0 = 0x00; // 不使用FIFO
UMCON0 = 0x00; // 不使用流控
UBRDIV0 = UART_BRD; // 波特率为115200
}
/*
* 发送一个字符
*/
void putc(unsigned char c)
{
/* 等待,直到发送缓冲区中的数据已经全部发送出去 */
while (!(UTRSTAT0 & TXD0READY));
/* 向UTXH0寄存器中写入数据,UART即自动将它发送出去 */
UTXH0 = c;
}
void puts(char *str)
{
int i = 0;
while (str[i])
{
putc(str[i]);
i++;
}
}
void puthex(unsigned int val)
{
/* 0x1234abcd */
int i;
int j;
puts("0x");
for (i = 0; i < 8; i++)
{
j = (val >> ((7-i)*4)) & 0xf;
if ((j >= 0) && (j <= 9))
putc('0' + j);
else
putc('A' + j - 0xa);
}
}
start.S调用init.c,后调用boot.c
编译完成,生成boot.bin