范例
01 | LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() |
03 | .expireAfterWrite( 10 , TimeUnit.MINUTES) |
04 | .removalListener(MY_LISTENER) |
06 | new CacheLoader<Key, Graph>() { |
07 | public Graph load(Key key) throws AnyException { |
08 | return createExpensiveGraph(key); |
适用性
缓存在很多场景下都是相当有用的。例如,计算或检索一个值的代价很高,并且对同样的输入需要不止一次获取值的时候,就应当考虑使用缓存。
Guava Cache与ConcurrentMap很相似,但也不完全一样。最基本的区别是ConcurrentMap会一直保存所有添加的元素,直到显式地移除。相对地,Guava Cache为了限制内存占用,通常都设定为自动回收元素。在某些场景下,尽管LoadingCache 不回收元素,它也是很有用的,因为它会自动加载缓存。
加载
在使用缓存前,首先问自己一个问题:有没有合理的默认方法来加载或计算与键关联的值?如果有的话,你应当使用CacheLoader。如果没有,或者你想要覆盖默认的加载运算,同时保留"获取缓存-如果没有-则计算"[get-if-absent-compute]的原子语义,你应该在调用get时传入一个Callable实例。缓存元素也可以通过Cache.put方法直接插入,但自动加载是首选的,因为它可以更容易地推断所有缓存内容的一致性。
LoadingCache是附带CacheLoader构建而成的缓存实现。创建自己的CacheLoader通常只需要简单地实现V load(K key) throws Exception方法。例如,你可以用下面的代码构建LoadingCache:
01 | LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() |
04 | new CacheLoader<Key, Graph>() { |
05 | public Graph load(Key key) throws AnyException { |
06 | return createExpensiveGraph(key); |
12 | return graphs.get(key); |
13 | } catch (ExecutionException e) { |
14 | throw new OtherException(e.getCause()); |
从LoadingCache查询的正规方式是使用get(K)方法。这个方法要么返回已经缓存的值,要么使用CacheLoader向缓存原子地加载新值。由于CacheLoader可能抛出异常,LoadingCache.get(K)也声明为抛出ExecutionException异常。如果你定义的CacheLoader没有声明任何检查型异常,则可以通过getUnchecked(K)查找缓存;但必须注意,一旦CacheLoader声明了检查型异常,就不可以调用getUnchecked(K)。
01 | LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() |
02 | .expireAfterAccess( 10 , TimeUnit.MINUTES) |
04 | new CacheLoader<Key, Graph>() { |
05 | public Graph load(Key key) { |
06 | return createExpensiveGraph(key); |
11 | return graphs.getUnchecked(key); |
getAll(Iterable<? extends K>)方法用来执行批量查询。默认情况下,对每个不在缓存中的键,getAll方法会单独调用CacheLoader.load来加载缓存项。如果批量的加载比多个单独加载更高效,你可以重载CacheLoader.loadAll来利用这一点。getAll(Iterable)的性能也会相应提升。
注:CacheLoader.loadAll的实现可以为没有明确请求的键加载缓存值。例如,为某组中的任意键计算值时,能够获取该组中的所有键值,loadAll方法就可以实现为在同一时间获取该组的其他键值。校注:getAll(Iterable<? extends K>)方法会调用loadAll,但会筛选结果,只会返回请求的键值对。
所有类型的Guava Cache,不管有没有自动加载功能,都支持get(K, Callable<V>)方法。这个方法返回缓存中相应的值,或者用给定的Callable运算并把结果加入到缓存中。在整个加载方法完成前,缓存项相关的可观察状态都不会更改。这个方法简便地实现了模式"如果有缓存则返回;否则运算、缓存、然后返回"。
01 | Cache<Key, Graph> cache = CacheBuilder.newBuilder() |
08 | cache.get(key, new Callable<Key, Graph>() { |
10 | public Value call() throws AnyException { |
11 | return doThingsTheHardWay(key); |
14 | } catch (ExecutionException e) { |
15 | throw new OtherException(e.getCause()); |
显式插入
使用cache.put(key, value)方法可以直接向缓存中插入值,这会直接覆盖掉给定键之前映射的值。使用Cache.asMap()视图提供的任何方法也能修改缓存。但请注意,asMap视图的任何方法都不能保证缓存项被原子地加载到缓存中。进一步说,asMap视图的原子运算在Guava Cache的原子加载范畴之外,所以相比于Cache.asMap().putIfAbsent(K,
V),Cache.get(K, Callable<V>) 应该总是优先使用。
缓存回收
一个残酷的现实是,我们几乎一定没有足够的内存缓存所有数据。你你必须决定:什么时候某个缓存项就不值得保留了?Guava Cache提供了三种基本的缓存回收方式:基于容量回收、定时回收和基于引用回收。
基于容量的回收(size-based eviction)
如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。
另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。
01 | LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() |
02 | .maximumWeight( 100000 ) |
03 | .weigher( new Weigher<Key, Graph>() { |
04 | public int weigh(Key k, Graph g) { |
05 | return g.vertices().size(); |
09 | new CacheLoader<Key, Graph>() { |
10 | public Graph load(Key key) { |
11 | return createExpensiveGraph(key); |
定时回收(Timed Eviction)
CacheBuilder提供两种定时回收的方法:
如下文所讨论,定时回收周期性地在写操作中执行,偶尔在读操作中执行。
测试定时回收
对定时回收进行测试时,不一定非得花费两秒钟去测试两秒的过期。你可以使用Ticker接口和CacheBuilder.ticker(Ticker)方法在缓存中自定义一个时间源,而不是非得用系统时钟。
基于引用的回收(Reference-based Eviction)
通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:
显式清除
任何时候,你都可以显式地清除缓存项,而不是等到它被回收: