poj2446(二分匹配)

本文探讨了一个经典的棋盘覆盖问题,即如何使用2×1的矩形块覆盖一个带有随机洞的n×m棋盘。通过构建图模型,并运用二分匹配算法来判断是否能够完全覆盖棋盘,给出了详细的实现步骤与代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chessboard
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 19296 Accepted: 6088

Description

Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below). 

We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 
1. Any normal grid should be covered with exactly one card. 
2. One card should cover exactly 2 normal adjacent grids. 

Some examples are given in the figures below: 
 
A VALID solution.

 
An invalid solution, because the hole of red color is covered with a card.

 
An invalid solution, because there exists a grid, which is not covered.

Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

Input

There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

Output

If the board can be covered, output "YES". Otherwise, output "NO".

Sample Input

4 3 2
2 1
3 3

Sample Output

YES

题意:一个n*m的棋盘,上面有k个洞。现在有2*1的矩形块无限个,需要铺满棋盘,有洞的地方不能铺,其余要铺满,问能不能做到。

思路:一个点可以和它上下左右四个点连边,所以先遍历一遍棋盘,每遍历一个点,把它和它左边和上面不是洞的点连一条无向边,这样就建好了图,跑一次二分匹配,比较最大匹配与不是洞格子数的数量关系,如果是2倍就可以。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
using namespace std;
#define max_v 35*35
int V;
vector<int>G[max_v];
int match[max_v];
bool used[max_v];
void add_edge(int u,int v)
{
	G[u].push_back(v);
	G[v].push_back(u);
}
bool dfs(int v)
{
	used[v]=true;
	for(int i=0;i<G[v].size();i++)
	{
		int u=G[v][i],w=match[u];
		if(w<0||!used[w]&&dfs(w))
		{
			match[v]=u;
			match[u]=v;
			return true;
		}
	}
	return false;
}
int bipartite_matching()
{
	int res=0;
	memset(match,-1,sizeof(match));
	for(int v=0;v<V;v++)
	{
		if(match[v]<0)
		{
			memset(used,0,sizeof(used));
			if(dfs(v))
			{
				res++;
			}
		}
	}
	return res;
}

struct node
{
	double x;
	double y;
}gph[105];

double dis(double x1,double y1,double x2,double y2)
{
	return (x2-x1)*(x2-x1)+(y2-y1)*(y2-y1);
}
bool map[35][35];
int main()
{
	int n,m,num;
	while(~scanf("%d%d%d",&n,&m,&num))
	{
		for(int i=0;i<max_v;i++)G[i].clear();
		V=n*m;
		memset(map,0,sizeof(map));
		int x,y;
		for(int i=0;i<num;i++)
		{
			scanf("%d%d",&x,&y);
			map[y-1][x-1]=1;
		}
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<m;j++)
			{
				if(map[i][j])continue;
				if(i-1>=0&&!map[i-1][j])
				{
					add_edge(i*m+j+1,(i-1)*m+j+1);
				}
				if(j-1>=0&&!map[i][j-1])
				{
					add_edge(i*m+j+1,i*m+j);
				}
			}
		}
		if(bipartite_matching()*2<n*m-num)
			printf("NO\n");
		else
			printf("YES\n");
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值