Machine Learning Yearning book draft - 读记(更新至Chapters 14)

本文是关于Andrew NG的新书《Machine Learning Yearning》的读记,书中探讨了如何在实际应用中优化机器学习策略。作者强调了正确选择开发和测试集、评估指标的重要性,以及如何通过误差分析来改进系统性能。书中的内容旨在帮助团队快速迭代和优化机器学习项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

废话不多说,先上书封面!


首先,非常感谢Andrew NG贡献的新书,本书总共大概50多章,昨天收到了1-12章(1-2页/章,总共23页)的手稿,让各位读者一睹为快。

附上书的下载地址:

1-12章:https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_01.pdf

13章:https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_02.pdf

14章:https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_03.pdf


一、前言

先说说我对于此书的期待,本书作者是Andrew NG,我相信这个名字对于所有做机器学习的朋友来说都不陌生,斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任,Coursera的联合创始人,14年加入Baidu IDL担任百度公司首席科学家。或许有许多人跟我一样,是从NG的机器学习视频中得到启蒙的,从此走上了machine learning的道路。在我看来,NG在Teaching方面做的工作为所有年轻学者、科研工作者以及工业界的研发人员带来了实实在在进步的力量。看过CS229课程的朋友可能会有很深的体会,NG讲的内容既深刻又浅显,既理论又实际,公布了大量学习的code以供相关学习,NG无非是想让机器学习的方法真正应用到实际生活中,让机器学习不光在学术上,也在工业上产生应有的价值。当然最终也包括本文提到的此书。(以上的啰嗦是本人对于NG的热衷之言,仅代表本人,勿喷!)



二、《Machine Learning Yearning》

1)Why Machine Learning Strategy

首先,本书列举了一下机器学习的应用包括:网页搜索,辣鸡邮件分类,语音识别,商品推荐等等等。。。然后,NG举了一个例子:如果有一个检测猫的检测器,当这个检测器表现不好的时候,你该怎么办?

● 收集更多的数据

● 让数据集更丰富:例如不同姿势、不同颜色的猫...

● 让梯度再飞一会儿

● 搞个更大的网络,多来几层、多来点神经元,最后加点参数

● 小的网络也不一定差哦

● 加入正则项 - 像是L2

● 把整个框架都换了(什么激活函数之类的)

这样做有一个顾虑,如果没有找准方向,那么你可能会白白花掉很多时间,那么我们该如何下手呢?


2)How to use this book to help your team

NG写此书的目的就在于,让读者了解机器学习算法在应用中出了什么问题,同时如何应对?

此书每一章只有1-2页,前12章没有看到一条数学公式,这对于恐惧英语和数学的同学来说是

Table of Contents (draft) Why Machine Learning Strategy 4 ........................................................................................... How to use this book to help your team 6 ................................................................................ Prerequisites and Notation 7 .................................................................................................... Scale drives machine learning progress 8 ................................................................................ Your development and test sets 11 ............................................................................................ Your dev and test sets should come from the same distribution 13 ........................................ How large do the dev/test sets need to be? 15 .......................................................................... Establish a single-number evaluation metric for your team to optimize 16 ........................... Optimizing and satisficing metrics 18 ..................................................................................... Having a dev set and metric speeds up iterations 20 ............................................................... When to change dev/test sets and metrics 21 .......................................................................... Takeaways: Setting up development and test sets 23 .............................................................. Build your first system quickly, then iterate 25 ........................................................................ Error analysis: Look at dev set examples to evaluate ideas 26 ................................................ Evaluate multiple ideas in parallel during error analysis 28 ................................................... If you have a large dev set, split it into two subsets, only one of which you look at 30 ........... How big should the Eyeball and Blackbox dev sets be? 32 ...................................................... Takeaways: Basic error analysis 34 .......................................................................................... Bias and Variance: The two big sources of error 36 ................................................................. Examples of Bias and Variance 38 ............................................................................................ Comparing to the optimal error rate 39 ................................................................................... Addressing Bias and Variance 41 .............................................................................................. Bias vs. Variance tradeoff 42 ..................................................................................................... Techniques for reducing avoidable bias 43 .............................................................................. Techniques for reducing Variance 44 ....................................................................................... Error analysis on the training set 46 ........................................................................................ Diagnosing bias and variance: Learning curves 48 ................................................................. Plotting training error 50 .......................................................................................................... Interpreting learning curves: High bias 51 ............................................................................... Interpreting learning curves: Other cases 53 .......................................................................... Plotting learning curves 55 ....................................................................................................... Why we compare to human-level performance 58 .................................................................. How to define human-level performance 60 ........................................................................... Surpassing human-level performance 61 ................................................................................ Why train and test on different distributions 63 ...................................................................... Page!2 Machine Learning Yearning-Draft V0.5 Andrew NgWhether to use all your data 65 ................................................................................................ Whether to include inconsistent data 67 .................................................................................. Weighting data 68 .................................................................................................................... Generalizing from the training set to the dev set 69 ................................................................ Addressing Bias and Variance 71 ............................................................................................. Addressing data mismatch 72 ................................................................................................... Artificial data synthesis 73 ........................................................................................................ The Optimization Verification test 76 ...................................................................................... General form of Optimization Verification test 78 ................................................................... Reinforcement learning example 79 ......................................................................................... The rise of end-to-end learning 82 ........................................................................................... More end-to-end learning examples 84 .................................................................................. Pros and cons of end-to-end learning 86 ................................................................................ Learned sub-components 88 .................................................................................................... Directly learning rich outputs 89 .............................................................................................. Error Analysis by Parts 93 ....................................................................................................... Beyond supervised learning: What’s next? 94 ......................................................................... Building a superhero team - Get your teammates to read this 96 ........................................... Big picture 98 ............................................................................................................................ Credits 99
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值