1.对numpy数据进行归一化
import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
X = np.random.choice(255, (5,4,3))
print(X)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0,0,0), std=(1,1,1)),
])
transform(X)
print(X)
print(X.shape)
2.对PIL读取的图像进行归一化
import torch
from PIL import Image
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
img = Image.open('D:\datasets\img\lena.jpg')
plt.figure()
plt.imshow(img)
plt.title('原图',fontsize=12,color='r')
plt.show()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0,0,0), std=(8,8,8)),
])
img1 = transform(img)
img1 = np.array(img1*255, dtype=np.uint8)
print('转换后的shape', img.shape)
img_np = np.zeros((200,200,3),dtype=np.uint8)

本文详细介绍了如何使用PyTorch及其torchvision库对numpy数组和PIL图像进行归一化处理,展示了不同转换代码的效果,并解释了ToTensor()函数的工作原理。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



