题目连接:
题目大意:
给出一个无向图,给边确定方向,让每个顶点的|入度-出度|<=1,给出一个可行的方案。
题目分析:
首先对于每个度数为奇数的点,一定是一条路径的起点或者终点,所以我们从这个点开始搜索,会导致两个奇数点变为偶数点,如果一个连通图中均是偶数点或者只有一个奇数点,那么走一遍欧拉路一定能够遍历所有的边。所以我们先把奇数点统统变成偶数点,然后通过一遍dfs就能将每个连通图的每条边都确定方向。因为如果连通图中如果所有点都是偶数点,每个有一个入度就就会出现一个出度。所以每个图一定有解。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define MAX 100007
using namespace std;
vector<int> e[MAX];
vector<int> id[MAX];
vector<int> col[MAX];
int d[MAX];
int mark[MAX<<2];
int ans[MAX<<2];
int t,n,m;
/*struct edge
{
int v,next,id,dir;
}e[MAX<<3];
int head[MAX];
int cc;*/
/*inline void add ( int u , int v , int i , int d )
{
e[cc].v = v;
e[cc].id = i;
e[cc].dir = d;
e[cc].next = head[u];
head[u] = cc++;
}*/
/*void init ()
{
memset ( mark , 0 , sizeof ( mark ));
memset ( d , 0 , sizeof ( d ));
memset ( head , -1 , sizeof ( head ));
cc = 0;
}*/
inline void add ( int u , int v , int i )
{
e[u].push_back ( v );
id[u].push_back ( i );
col[u].push_back ( 1 );
e[v].push_back ( u );
id[v].push_back ( i );
col[v].push_back ( 0 );
}
void init ()
{
for ( int i = 0 ; i <= n ; i++ )
{
e[i].clear();
id[i].clear();
col[i].clear();
}
memset ( d , 0 , sizeof ( d ));
memset ( mark , 0 , sizeof ( mark ));
}
void dfs ( int u )
{
int len = e[u].size()-1;
for ( int i = len ; i >= 0; i-- )
{
int v = e[u][i];
int x = id[u][i];
int c = col[u][i];
e[u].pop_back();
if ( mark[x] ) continue;
d[u]--;
d[v]--;
ans[x] = c;
mark[x] = 1;
dfs ( v );
break;
}
}
/*void dfs ( int u )
{
for ( int& i = head[u] ; ~i ; i = e[i].next )
{
int v = e[i].v;
int x = e[i].id;
int c = e[i].dir;
if ( mark[x] ) continue;
d[u]--;
d[v]--;
ans[x] = c;
mark[x] = 1;
dfs ( v );
break;
}
}*/
int main ( )
{
scanf ( "%d" , &t );
while ( t-- )
{
scanf ("%d%d" , &n , &m );
init ();
for ( int i = 0 ; i < m ; i++ )
{
int u,v;
scanf ( "%d%d" , &u , &v );
//add ( u , v , i , 1);
//add ( v , u , i , 0);
add ( u ,v ,i );
d[u]++,d[v]++;
}
for ( int u = 1 ; u <= n ; u++ )
if ( d[u]&1 )
dfs ( u );
for ( int u = 1 ; u <= n ; u++ )
dfs ( u );
for ( int i = 0 ; i < m ; i++ )
printf ( "%d\n" , ans[i] );
}
}