hdu 2971 Tower(矩阵快速幂)

本文介绍了一个有趣的问题,即计算由特定公式定义的塔体积,并在模意义下给出答案。使用矩阵快速幂的方法来高效地解决这个问题。

Tower

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2521    Accepted Submission(s): 567


Problem Description
Alan loves to construct the towers of building bricks. His towers consist of many cuboids with square base. All cuboids have the same height h = 1. Alan puts the consecutive cuboids one over another:

Recently in math class, the concept of volume was introduced to Alan. Consequently, he wants to compute the volume of his tower now. The lengths of cuboids bases (from top to bottom) are constructed by Alan in the following way:

1. Length a1 of the first square is one.

2. Next, Alan fixes the length a2 of the second square.

3. Next, Alan calculates the length an (n > 2) by 2*a2*(an-1)-(an-2). Do not ask why he chose such

a formula; let us just say that he is a really peculiar young fellow. For example, if Alan fixes a2 = 2, then a3 = 8 -a1 = 7; see Figure 1. If Alan fixes a2 = 1, then an = 1 holds for all n belong to N; see Figure 2.

Now Alan wonders if he can calculate the volume of tower of N consecutive building bricks. Help Alan and write the program that computes this volume. Since it can be quite large, it is enough to compute the answer modulo given natural number m.
 

Input
The input contains several test cases. The first line contains the number t (t <= 10^5) denoting the number of test cases. Then t test cases follow. Each of them is given in a separate line containing three integers a2,N,m (1 <= a2,m <= 10^9, 2 <= N <= 10^9) separated by a single space, where a2 denotes the fixed length of second square in step 2, while N denotes the number of bricks constructed by Alan.
 

Output
For each test case (a2,N,m) compute the volume of tower of N consecutive bricks constructed by Alan according to steps (1-3) and output its remainder modulo m.
 

Sample Input
  
3 2 3 100 1 4 1000 3 3 1000000000
 

Sample Output
  
54 4 299
Hint
 

Source
 

题目分析:

这道题又教我怎么做人了。。。
模没取够要溢出,取多了会超时,必要时要手动模拟取模,这道题要求的是sum(Ai^2)
那么如何递推呢,设Ai = XAi-1 + YAi-2
那么Ai^2=X^2*Ai-1^2+2*X*Y*Ai-1*Ai-2+Y^2*A-2^2
而Ai-1*Ai-2 = (XAi-2+YAi-3)*Ai-2 = X*Ai-1^2+Y*Ai-2*Ai-3

那么就可以通过递推得到

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define MAX 4

using namespace std;

typedef long long LL;

int t;
LL a2,n,m;

struct Matrix
{
    LL a[MAX][MAX];
    Matrix ( )
    {
        memset ( a, 0 , sizeof ( a ) );
    }
};

Matrix multi ( Matrix& m1 , Matrix& m2 )
{
    Matrix ret;
    for ( int i = 0 ; i < MAX ; i++ )
        for ( int j = 0 ; j < MAX ; j++ )
            if ( m1.a[i][j] )
                for ( int k = 0 ; k < MAX ; k++ )
                {
                    LL temp = m1.a[i][j]*m2.a[j][k]%m;
                    if ( temp < 0 ) temp += m;
                    ret.a[i][k] += temp;
                    if ( ret.a[i][k] >=  m ) ret.a[i][k] -= m;
                    if ( ret.a[i][k] < 0 ) ret.a[i][k] += m;
                }
                //ret.a[i][k] = ( ret.a[i][k] + m1.a[i][j]*m2.a[j][k]%m+m )%m;
    return ret;
}

Matrix quick ( Matrix& m , int n )
{
    Matrix ret;
    for ( int i = 0 ; i < MAX ; i++ )
        ret.a[i][i] = 1;
    while ( n )
    {
        if ( n&1 ) ret = multi ( ret , m );
        m = multi ( m , m );
        n >>= 1;
    }
    return ret;
}

void print ( Matrix m )
{
    for ( int i = 1 ; i < MAX ; i ++ )
    {
        for ( int j = 1 ; j < MAX ; j++ )
            printf ( "%lld " , m.a[i][j] );
        puts ("");
    }
}

int main ( )
{
    scanf ( "%d" , &t );
    while ( t-- )
    {
        scanf ( "%lld%lld%lld" , &a2 , &n , &m );
        Matrix ans;
        ans.a[0][0] = 1;
        ans.a[0][1] = a2*a2%m;
        ans.a[0][2] = 1;
        ans.a[0][3] = a2%m;
       // print ( ans );
       // puts ("");
        Matrix vary;
        vary.a[0][0] = 1;
        vary.a[1][0] = 1;
        vary.a[1][1] = 4*a2%m*a2%m;
        vary.a[2][1] = 1;
        vary.a[3][1] = (-4*a2%m+m)%m;
        vary.a[1][2] = 1;
        vary.a[1][3] = 2*a2%m;
        vary.a[3][3] = -1;
       // print ( vary );
        vary = quick ( vary , n-1 );
        ans = multi ( ans , vary );
        printf ( "%lld\n" , (ans.a[0][0]+m)%m );
    }
}



### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值