Segment set
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3703 Accepted Submission(s): 1394
Problem Description
A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.

Input
In the first line there is an integer t - the number of test case. For each test case in first line there is an integer n (n<=1000) - the number of commands.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
Output
For each Q-command, output the answer. There is a blank line between test cases.
Sample Input
1 10 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 P 2.00 3.00 3.00 1.00 Q 1 Q 3 P 1.00 4.00 8.00 2.00 Q 2 P 3.00 3.00 6.00 -2.00 Q 5
Sample Output
1 2 2 2 5
Author
LL
Source
题目分析:每次新添加的直线和前面的直线判断是否相交,利用并查集合并集合
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define eps 1e-10
#define MAX 1007
using namespace std;
struct Point
{
double x,y;
Point():x(0),y(0){}
Point ( double a , double b )
:x(a),y(b){}
};
struct Line
{
Point u,v;
}l[MAX];
int fa[MAX];
int num[MAX];
int sig ( double d )
{
return fabs(d)<eps?0:d<0?-1:1;
}
double cross ( Point& o , Point& a , Point& b )
{
return (a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
}
bool OnSegment ( Point&a , Point& b , Point& c )
{
return c.x>=min(a.x,b.x)&& c.x <= max ( a.x,b.x)
&& c.y >= min(a.y,b.y)&&c.y<=max(a.y,b.y);
}
bool segCross ( Point& a , Point& b , Point& c , Point& d )
{
double s1,s2;
int d1,d2,d3,d4;
d1 = sig( s1 = cross(a,b,c) );
d2 = sig( s2 = cross(a,b,d) );
d3 = sig( cross(c,d,a) );
d4 = sig( cross(c,d,b) );
if ( (d1^d2)==-2 && (d3^d4)==-2) return 1;
else if ( d1 == 0 && OnSegment( a , b , c ) ) return 1;
else if ( d2 == 0 && OnSegment( a , b , d ) ) return 1;
else if ( d3 == 0 && OnSegment( c , d , a ) ) return 1;
else if ( d4 == 0 && OnSegment( c , d , b ) ) return 1;
return 0;
}
int cnt,t,n;
char s[5];
void init ( int n )
{
for ( int i = 0 ; i <= n ; i++ )
fa[i] = i;
}
int find ( int x )
{
return x==fa[x]?x:fa[x]=find(fa[x]);
}
int main ( )
{
double a,b,c,d;
int e;
scanf ( "%d" , &t );
while ( t-- )
{
cnt = 1;
scanf ( "%d" , &n );
init( n );
for ( int i = 0 ; i < n ; i++ )
{
scanf ( "%s" , s );
if ( s[0] == 'P' )
{
scanf ( "%lf%lf%lf%lf" , &a,&b,&c,&d );
l[cnt].u.x = a;
l[cnt].u.y = b;
l[cnt].v.x = c;
l[cnt].v.y = d;
num[cnt] = 1;
for ( int i = 1 ; i < cnt ; i++ )
if ( segCross ( l[i].u , l[i].v , l[cnt].u , l[cnt].v ) )
{
int x = find(i);
int y = find(cnt);
if ( x == y ) continue;
fa[y] = x;
num[x]+=num[y];
}
cnt++;
}
else
{
scanf ( "%d" , &e );
printf ( "%d\n" , num[find(e)] );
}
}
if ( t ) puts ("");
}
}