卡特兰数

本文介绍了卡特兰数的基本概念及其四种典型应用场景:括号化问题、出栈次序问题、多边形划分问题及二叉树构建问题。通过递归公式解析,帮助读者理解如何运用卡特兰数解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Catalan数

  中文:卡特兰数

  原理:

  令h(1)=1,h(0)=1,catalan数满足递归式:

  h(n)= h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1) (其中n>=2)

  另类递归式:

  h(n)=((4*n-2)/(n+1))*h(n-1);

  该递推关系的解为:

  h(n+1)=C(2n,n)/(n+1) (n=1,2,3,...)

  我并不关心其解是怎么求出来的,我只想知道怎么用catalan数分析问题。

  我总结了一下,最典型的四类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)

  1.括号化问题。

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

  2.出栈次序问题。

  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?

  类似:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

  3.将多边行划分为三角形问题。

  将一个凸多边形区域分成三角形区域的方法数?

  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她

  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

  4.给顶节点组成二叉树的问题。

  给定N个节点,能构成多少种不同的二叉树?

  (能构成h(N)个)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值