CF#345 div2 A\B\C题

本文解析了三道ACM竞赛题目,A题采用贪心算法解决配对问题;B题通过排序和动态规划求解最长上升子序列;C题利用哈希表统计特定条件下的点对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A题:

贪心水题,注意1,1这组数据,坑了不少人

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
	int a1,a2;
	while(cin>>a1>>a2)
	{
		int i=0;
		int b = max(a1,a2);
		int s = min(a1,a2);
		if(b==1 && s==1) {
			cout<<0<<endl;
			continue;
		}
		for(i = 1;i <= 10000;i++)
		{
			b -= 2;
			s += 1;
			if(!b || !s) break;
			if(s > b) {
				int tmp = b;
				b = s;
				s = tmp;
			}
		}
		cout<<i<<endl;
	}
	return 0;
} 

B题:

首先给数组排序,然后问题就可以抽象成找到一个有序数组的上升子序列的最大个数,实现方法有点笨拙(我宁愿称之为巧妙:))

#include <iostream>
#include <cstring>
#include <algorithm>
#define INF 99999
using namespace std;

int num[1007][1007];

int main(){
	int n;
	int a[1007];
	while(cin>>n)
	{
		int ans = 0;
		memset(num,0,sizeof(num));
		for(int i = 1;i <= n;i++)
			cin>>a[i];
		sort(a+1,a+1+n);
		//初始化第一个 
		int cnt = 0;
		int Min = INF;
		num[1][++cnt]++;
		int tmp = a[1];
		for(int i = 2;i <= n;i++)
		{
			if(a[i] == tmp) num[1][cnt]++;
			else {
				tmp = a[i];
				num[1][++cnt]++;
			}
		}
		for(int i = 1;i <= cnt;i++)
			Min = min(Min,num[1][i]);
		int y = 1;
		while(cnt) {
			ans += (cnt-1)*Min;
			int tcount = 0;
			for(int i = 1;i <= cnt;i++)
			{
				num[y][i] -= Min;
				if(num[y][i]) 
					num[y+1][++tcount] = num[y][i];
			}
			cnt = tcount;
			y++;
			Min = INF;
			for(int i = 1;i <= cnt;i++)
				Min = min(Min,num[y][i]);
		}
		cout<<ans<<endl;
	}
	return 0;
}

 


C题:

将二者的计算公式稍作推导就可以发现任意两点要符合要求,只要xy两个坐标只要满足(x||y)的复合命题为真即可。然后至于数组的大小,这里引用了特殊的数据结构来存储大量的数据,然后注意x或y坐标相同有n个点,而ans是要加或减n*(n-1)/2的

#include <iostream>
#include <map>
#include <cstdio>
#define ll long long
using namespace std;

map<ll,ll> num_x;
map<ll,ll> num_y;
map<pair<ll,ll>,ll> num_s;
ll tx,ty;

int main()
{
	int n;
	while(cin>>n)
	{
		ll ans = 0;
		num_x.clear();
		num_y.clear();
		num_s.clear();
		for(int i = 1;i <= n;i++)
		{
			scanf("%I64d%I64d",&tx,&ty);
			num_x[tx]++;
			num_y[ty]++;
			num_s[make_pair(tx,ty)]++;
		}
		map<ll,ll>::iterator it1;
		map<pair<ll,ll>,ll>::iterator it2;
		for(it1 = num_x.begin();it1 != num_x.end();it1++)
			ans += it1->second*(it1->second-1)/2;
		for(it1 = num_y.begin();it1 != num_y.end();it1++)
			ans += it1->second*(it1->second-1)/2;
		for(it2 = num_s.begin();it2 != num_s.end();it2++)
			ans -= it2->second*(it2->second-1)/2;
		printf("%I64d\n",ans);
	} 
	return 0;
} 

 

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
<h2 class="level2">一、研究背景与意义</h2> <div class="content"> 复杂肝胆管结石是肝胆外科难治性疾病之一,具有结石分布广泛、胆管狭窄发生率高、肝实质萎缩明显等特点,术后结石残留率(20%-50%)和复发率(23.8%)居高不下,严重影响患者预后<document id="2"></document><document id="8"></document>。精准定位结石、评估胆管狭窄及肝内血管解剖是提高手术疗效的关键,但传统影像学检查(如超声、CT)存在二维图像空间分辨率有限、难以实时动态评估等不足<document id="3"></document>。 </div> <div class="content"> 三维可视化技术通过对肝脏、胆道及血管的数字化重建,可立体显示结石分布、胆管狭窄部位及血管解剖关系,显著降低结石残留率(0% vs 9.5%)和手术时间(218.8min vs 254.7min)<document id="2"></document><document id="4"></document>;术中超声可实时定位深部结石、评估胆管通畅性,弥补术前三维重建静态评估的局限<document id="38"></document>。然而,目前关于两者联合应用的系统性研究较少,其在复杂肝胆管结石中的协同价值尚未明确。本研究旨在探索三维可视化联合术中超声的应用效果,为优化复杂肝胆管结石诊疗策略提供依据。 </div> <h2 class="level2">二、国内外研究现状</h2> <div class="content"> 国外研究表明,三维重建技术可提高肝切除术的精准性,其引导的手术在结石清除率(100% vs 90.5%)和胆管狭窄矫正率(98.2% vs 85.7%)方面优于传统手术<document id="2"></document>。术中超声在实时定位肝内微小结石(<5mm)中表现突出,但其单独应用受限于操作者经验,对复杂胆管解剖的整体评估不足<document id="6"></document>。 </div> <div class="content"> 国内研究中,三维可视化技术已广泛用于肝胆管结石的术前规划,如MI-3DVS软件可实现胆道系统的个体化重建,引导腹腔镜解剖性肝切除的结石清除率达100%<document id="3"></document><document id="4"></document>;术中超声联合胆道镜可提高复杂病例的结石取出率(93.3% vs 78.6%)<document id="8"></document>。但现有研究多聚焦单一技术的应用,对三维可视化与术中超声的联合评估、动态协同机制探讨不足,尤其缺乏对双侧肝胆管结石、合并肝萎缩病例的针对性分析<document id="35"></document><document id="39"></document>。 </div> <h2 class="level2">三、研究目的与内容</h2> <h2 class="level2" style="font-size:16pt">(一)研究目的</h2> <div class="content"> 1. 评估三维可视化联合术中超声在复杂肝胆管结石术前规划、术中定位及术后疗效中的应用价值;<br> 2. 比较联合技术与单一技术(三维可视化或术中超声)在手术指标(出血量、时间)、结石清除率及复发率中的差异;<br> 3. 建立基于联合技术的复杂肝胆管结石个体化诊疗流程。 </div> <h2 class="level2" style="font-size:16pt">(二)研究内容</h2> <div class="content"> 1. 病例选择:回顾性收集2022年1月至2024年1月80例复杂肝胆管结石患者,分为联合组(40例,三维可视化+术中超声)和对照组(40例,单一三维可视化或术中超声),纳入标准:结石分布≥2个肝段、合并胆管狭窄或肝萎缩<document id="24"></document><document id="31"></document>;<br> 2. 技术应用:联合组术前通过三维重建明确手术范围,术中超声实时验证结石清除情况及胆管通畅性;对照组采用单一技术引导手术<document id="4"></document><document id="38"></document>;<br> 3. 疗效评价:比较两组手术时间、术中出血量、结石清除率(术后1周CT/MRCP评估)、术后6个月复发率及并发症(胆瘘、胆管炎)发生率<document id="2"></document><document id="8"></document>。 </div> <h2 class="level2">四、研究方法与技术路线</h2> <h2 class="level2" style="font-size:16pt">(一)研究方法</h2> <div class="content"> 1. 三维重建:采用64排螺旋CT采集数据(层厚0.625mm),通过MI-3DVS软件进行肝脏、胆道、血管分割与重建,测量结石体积、胆管狭窄程度及拟切除肝段体积<document id="4"></document><document id="36"></document>;<br> 2. 术中超声:采用高频探头(5-10MHz)实时探查肝内结石、评估胆管直径及血流情况,重点验证三维重建显示的狭窄部位和血管走形<document id="38"></document><document id="41"></document>;<br> 3. 统计学分析:采用SPSS 26.0,计量资料以(x±s)表示,组间比较用t检验;计数资料以率表示,用χ&sup2;检验,P<0.05为差异有统计学意义。 </div> <h2 class="level2" style="font-size:16pt">(二)技术路线</h2> <div class="content"> 病例筛选→分组(联合组/对照组)→联合组:术前三维重建+术中超声引导手术;对照组:单一技术引导手术→术后1周评估结石清除率→术后3、6个月随访(复发率、并发症)→数据统计分析→结论 </div> <h2 class="level2">五、预期成果与创新点</h2> <h2 class="level2" style="font-size:16pt">(一)预期成果</h2> <div class="content"> 1. 明确三维可视化联合术中超声可提高复杂肝胆管结石的结石清除率(≥95%),降低复发率(<5%);<br> 2. 形成《三维可视化联合术中超声在复杂肝胆管结石中的应用指南》;<br> 3. 发表核心期刊论文2-3篇,申请实用新型专利1项。 </div> <h2 class="level2" style="font-size:16pt">(二)创新点</h2> <div class="content"> 1. 首次系统探讨三维可视化与术中超声的协同机制,弥补术前静态评估与术中动态验证的技术断层;<br> 2. 针对双侧肝胆管结石、合并肝萎缩等复杂病例,建立基于联合技术的个体化手术方案<document id="35"></document><document id="39"></document>。 </div> <h2 class="level2">六、参考文献</h2> <div class="reference">[1] Fang CH, et al. Outcomes of Hepatectomy for Hepatolithiasis Based on 3-Dimensional Reconstruction Technique. J Am Coll Surg, 2013, 217(2):280-288.<document id="2"></document></div> <div class="reference">[2] 王小方, 等. 三维可视化在解剖性肝切除治疗肝胆管结石中的应用效果. 中国当代医药, 2023, 30(6):59-62.<document id="3"></document></div> <div class="reference">[3] 范应方, 等. 3D技术在精准肝胆管结石外科诊治中的应用研究. 南方医科大学博士学位论文, 2021.<document id="4"></document></div> <div class="reference">[4] Zhang ZH, et al. Value of multidisciplinary team in minimally invasive treatment of complex intrahepatic bile duct stones. BioScience Trends, 2021, 15(3):161-170.<document id="8"></document></div> <div class="reference">[5] 三维可视化技术在腹腔镜解剖性肝切除治疗Ⅰ型肝胆管结石病中的应用. 中国普通外科杂志, 2022, 31(5):621-627.<document id="38"></document></div> <div class="reference">[6] 三维可视化技术在复杂肝胆管结石病中的应用研究. 中华外科杂志, 2020, 58(8):612-617.<document id="35"></document></div> <div class="reference">[7] Yang ZQ, et al. Application of three-dimensional visualization technology in early surgical repair of bile duct injury during laparoscopic cholecystectomy. BMC Surgery, 2024, 24:271.<document id="6"></document></div> <div class="reference">[8] 解剖性肝切除治疗复发性肝胆管结石病. 中华肝胆外科杂志, 2021, 27(3):176-179.<document id="31"></document></div> <div class="btn-container"> <a href="#" class="download-btn">下载Word文档</a> </div>直接运行,提供word下载按钮
07-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值