深度学习和神经网络的区别

深度学习与传统的多层神经网络存在差异,尤其是在特征学习方面。传统的神经网络依赖人工挑选特征,而深度学习,特别是卷积神经网络(CNN),引入了部分连接的卷积层和降维层,实现信号的分级处理,网络自己选择和学习特征。这种结构使得深度学习能更好地从输入信号中提取复杂特征,最终映射到输出值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        从广义上说深度学习的网络结构也是多层神经网络的一种。
  传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
  而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
  输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层
  简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。
  深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值