1.进程
(1)fork创建子进程
import os
rpid = os.fork()
if rpid<0:
print("fork调用失败。")
elif rpid == 0:
print("我是子进程(%s),我的父进程是(%s)"%(os.getpid(),os.getppid()))
x+=1
else:
print("我是父进程(%s),我的子进程是(%s)"%(os.getpid(),rpid))
print("父子进程都可以执行这里的代码")
运行结果
我是父进程(19360),我的子进程是(19361)
父子进程都可以执行这里的代码
我是子进程(19361),我的父进程是(19360)
父子进程都可以执行这里的代码
fork()将程序由此句开始的代码、资源都复制一份执行。
(2)multiprocessing
multiprocessing模块就是跨平台版本的多进程模块。
通过Process创建:
#coding=utf-8
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print('子进程运行中,name= %s ,pid=%d...' % (name, os.getpid()))
if __name__=='__main__':
print('父进程 %d.' % os.getpid())
p = Process(target=run_proc, args=('test',))
print('子进程将要执行')
p.start()
p.join()
print('子进程已结束')
通过类继承来创建:
from multiprocessing import Process
import time
import os
#继承Process类
class Process_Class(Process):
#因为Process类本身也有__init__方法,这个子类相当于重写了这个方法,
#但这样就会带来一个问题,我们并没有完全的初始化一个Process类,所以就不能使用从这个类继承的一些方法和属性,
#最好的方法就是将继承类本身传递给Process.__init__方法,完成这些初始化操作
def __init__(self,interval):
Process.__init__(self)
self.interval = interval
#重写了Process类的run()方法
def run(self): (必须重新写run方法)
print("子进程(%s) 开始执行,父进程为(%s)"%(os.getpid(),os.getppid()))
t_start = time.time()
time.sleep(self.interval)
t_stop = time.time()
print("(%s)执行结束,耗时%0.2f秒"%(os.getpid(),t_stop-t_start))
if __name__=="__main__":
t_start = time.time()
print("当前程序进程(%s)"%os.getpid())
p1 = Process_Class(2)
#对一个不包含target属性的Process类执行start()方法,就会运行这个类中的run()方法,所以这里会执行p1.run()
p1.start()
p1.join()
t_stop = time.time()
print("(%s)执行结束,耗时%0.2f"%(os.getpid(),t_stop-t_start))
(3)pool(进程池)
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
import os,time,random
def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d"%(msg,os.getpid()))
#random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start))
po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
#Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
#每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,))
print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
(4)进程间通信-Queue
不能通过全局变量通信,可以使用multiprocessing模块的Queue实现多进程之间的数据传递:
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print ''
print '所有数据都写入并且读完'
2.线程
(1)threading创建多线程
直接创建:
#coding=utf-8
import threading
from time import sleep,ctime
def sing():
for i in range(3):
print("正在唱歌...%d"%i)
sleep(1)
def dance():
for i in range(3):
print("正在跳舞...%d"%i)
sleep(1)
if __name__ == '__main__':
print('---开始---:%s'%ctime())
t1 = threading.Thread(target=sing)
t2 = threading.Thread(target=dance)
t1.start()
t2.start()
#sleep(5) # 屏蔽此行代码,试试看,程序是否会立马结束?
print('---结束---:%s'%ctime())
类继承创建:
#coding=utf-8
import threading
import time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "I'm "+self.name+' @ '+str(i) #name属性中保存的是当前线程的名字
print(msg)
if __name__ == '__main__':
t = MyThread()
t.start()
(2)线程间通过全局变量通信
from threading import Thread
import time
g_num = 100
def work1():
global g_num
for i in range(3):
g_num += 1
print("----in work1, g_num is %d---"%g_num)
def work2():
global g_num
print("----in work2, g_num is %d---"%g_num)
print("---线程创建之前g_num is %d---"%g_num)
t1 = Thread(target=work1)
t1.start()
#延时一会,保证t1线程中的事情做完
time.sleep(1)
t2 = Thread(target=work2)
t2.start()
(3)锁Lock
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
from threading import Thread, Lock
import time
g_num = 0
def test1():
global g_num
for i in range(1000000):
#True表示堵塞 即如果这个锁在上锁之前已经被上锁了,那么这个线程会在这里一直等待到解锁为止
#False表示非堵塞,即不管本次调用能够成功上锁,都不会卡在这,而是继续执行下面的代码
mutexFlag = mutex.acquire(True)
if mutexFlag:
g_num += 1
mutex.release()
print("---test1---g_num=%d"%g_num)
def test2():
global g_num
for i in range(1000000):
mutexFlag = mutex.acquire(True) #True表示堵塞
if mutexFlag:
g_num += 1
mutex.release()
print("---test2---g_num=%d"%g_num)
#创建一个互斥锁
#这个所默认是未上锁的状态
mutex = Lock()
p1 = Thread(target=test1)
p1.start()
p2 = Thread(target=test2)
p2.start()
print("---g_num=%d---"%g_num)
(上述程序没发挥出线程并发的效果)(4)同步
典型的生产者与消费者模式(队列实现):
#encoding=utf-8
import threading
import time
#python2中
from Queue import Queue
#python3中
# from queue import Queue
class Producer(threading.Thread):
def run(self):
global queue
count = 0
while True:
if queue.qsize() < 1000:
for i in range(100):
count = count +1
msg = '生成产品'+str(count)
queue.put(msg)
print(msg)
time.sleep(0.5)
class Consumer(threading.Thread):
def run(self):
global queue
while True:
if queue.qsize() > 100:
for i in range(3):
msg = self.name + '消费了 '+queue.get()
print(msg)
time.sleep(1)
if __name__ == '__main__':
queue = Queue()
for i in range(500):
queue.put('初始产品'+str(i))
for i in range(2):
p = Producer()
p.start()
for i in range(5):
c = Consumer()
c.start()
(5)Threadlocal
异步在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,但是每个函数一层一层定义参数显然很繁琐,而全局变量的修改必须要加锁。ThreadLocal应运而生:
import threading
# 创建全局ThreadLocal对象:
local_school = threading.local()
def process_student():
# 获取当前线程关联的student:
std = local_school.student
print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
# 绑定ThreadLocal的student:
local_school.student = name
process_student()
t1 = threading.Thread(target= process_thread, args=('dongGe',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('老王',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
执行结果:
Hello, dongGe (in Thread-A)
Hello, 老王 (in Thread-B)
(5)异步
同步调用:就是你喊你朋友吃饭 ,你朋友在忙 ,你就一直在那等,等你朋友忙完了 ,你们一起去 。
异步调用:就是你喊你朋友吃饭 ,你朋友说知道了 ,待会忙完去找你 ,你就去做别的了。
from multiprocessing import Pool
import time
import os
def test():
print("---进程池中的进程---pid=%d,ppid=%d--"%(os.getpid(),os.getppid()))
for i in range(3):
print("----%d---"%i)
time.sleep(1)
return "hahah"
def test2(args):
print("---callback func--pid=%d"%os.getpid())
print("---callback func--args=%s"%args)
pool = Pool(3)
pool.apply_async(func=test,callback=test2) #callback 是关键字
time.sleep(5)
print("----主进程-pid=%d----"%os.getpid())
(6)python假的多线程
3.进程与线程的对比
功能:
进程:能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
线程:能够完成多任务,比如 一个QQ中的多个聊天窗
定义:
进程是系统进行资源分配和调度的一个独立单位.
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。
优缺点:
线程执行开销小,但不利于资源的管理和保护;而进程正相反。
通信:
进程通过队列、管道等方式通信,不能通过全局变量通信;线程可以通过全局变量来进行通信。