计算1至n中数字X出现的次数

参考文献:http://www.cnblogs.com/cyjb/p/digitOccurrenceInRegion.html

一、1的数目

编程之美上给出的规律:

1. 如果第i位(自右至左,从1开始标号)上的数字为0,则第i位可能出现1的次数由更高位决定(若没有高位,视高位为0),等于更高位数字X当前位数的权重10i-1

2. 如果第i位上的数字为1,则第i位上可能出现1的次数不仅受更高位影响,还受低位影响(若没有低位,视低位为0),等于更高位数字X当前位数的权重10i-1+(低位数字+1)。

3. 如果第i位上的数字大于1,则第i位上可能出现1的次数仅由更高位决定(若没有高位,视高位为0),等于(更高位数字+1)X当前位数的权重10i-1

二、X的数目

这里的 X[1,9],因为 X=0 不符合下列规律,需要单独计算。

首先要知道以下的规律:

  • 从 1 至 10,在它们的个位数中,任意的 X 都出现了 1 次。
  • 从 1 至 100,在它们的十位数中,任意的 X 都出现了 10 次。
  • 从 1 至 1000,在它们的百位数中,任意的 X 都出现了 100 次。

依此类推,从 1 至 10i,在它们的左数第二位(右数第 i 位)中,任意的 X 都出现了 10i1 次。

这个规律很容易验证,这里不再多做说明。

接下来以 n=2593,X=5 为例来解释如何得到数学公式。从 1 至 2593 中,数字 5 总计出现了 813 次,其中有 259 次出现在个位,260 次出现在十位,294 次出现在百位,0 次出现在千位。

现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 X 都出现了 259 次。最后剩余的三个数 2591, 2592 和 2593,因为它们最大的个位数字 3 < X,因此不会包含任何 5。(也可以这么看,3<X,则个位上可能出现的X的次数仅由更高位决定,等于更高位数字(259)X101-1=259)。

然后是十位。从 1 至 2500 中,包含了 25 个 100,因此任意的 X 都出现了 25×10=250 次。剩下的数字是从 2501 至 2593,它们最大的十位数字 9 > X,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。(也可以这么看,9>X,则十位上可能出现的X的次数仅由更高位决定,等于更高位数字(25+1)X102-1=260)。

接下来是百位。从 1 至 2000 中,包含了 2 个 1000,因此任意的 X 都出现了 2×100=200 次。剩下的数字是从 2001 至 2593,它们最大的百位数字 5 == X,这时情况就略微复杂,它们的百位肯定是包含 5 的,但不会包含全部 100 个。如果把百位是 5 的数字列出来,是从 2500 至 2593,数字的个数与百位和十位数字相关,是 93+1 = 94。最后总计 200 + 94 = 294。(也可以这么看,5==X,则百位上可能出现X的次数不仅受更高位影响,还受低位影响,等于更高位数字(2)X103-1+(93+1)=294)。

最后是千位。现在已经没有更高位,因此直接看最大的千位数字 2 < X,所以不会包含任何 5。(也可以这么看,2<X,则千位上可能出现的X的次数仅由更高位决定,等于更高位数字(0)X104-1=0)。

到此为止,已经计算出全部数字 5 的出现次数。

总结一下以上的算法,可以看到,当计算右数第 i 位包含的 X 的个数时:

  1. 取第 i 位左边(高位)的数字,乘以 10i1,得到基础值 a
  2. 取第 i 位数字,计算修正值
    1. 如果大于 X,则结果为 a+10i1
    2. 如果小于 X,则结果为 a
    3. 如果等 X,则取第 i 位右边(低位)数字,设为 b,最后结果为 a+b+1

相应的代码非常简单,效率也非常高,时间复杂度只有 O(log10n)

三、上代码

 

复制代码
    /**
     * @param n
     * @param x [1,9]
     * @return
     */
    public int NumberOfXBetween1AndN_Solution(int n,int x) {
        if(n<0||x<1||x>9)
            return 0;
        int high,low,curr,tmp,i = 1;
        high = n;
        int total = 0;
        while(high!=0){
            high = n/(int)Math.pow(10, i);// 获取第i位的高位
            tmp = n%(int)Math.pow(10, i);
            curr = tmp/(int)Math.pow(10, i-1);// 获取第i位
            low = tmp%(int)Math.pow(10, i-1);// 获取第i位的低位
            if(curr==x){
                total+= high*(int)Math.pow(10, i-1)+low+1;
            }else if(curr<x){
                total+=high*(int)Math.pow(10, i-1);
            }else{
                total+=(high+1)*(int)Math.pow(10, i-1);
            }
            i++;
        }
        return total;        
    }
复制代码

 

问题:

给定一个十进制正整数N,写下从1开始,到N的所有整数,然后数一下其中出现的所有“1”的个数。

例如:
N= 2,写下1,2。这样只出现了1个“1”。

N= 12,我们会写下1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12。这样,1的个数是5。

问题一:

写一个函数f(N),返回1到N之间出现1的个数,比如f(12)= 5。

解法一:

让我们首先想到的一个方法是:遍历1~N,统计每个数1出现的个数,相加便得到所有1的个数。

[cpp]  view plain copy
  1. #include<stdio.h>  
  2. #include<stdlib.h>  
  3. #include<string.h>  
  4. long long int Count(long long int n){  
  5.     long long int count = 0;  
  6.     while(n){  
  7.         count += (n % 10 == 1)?1:0;  
  8.         n = n / 10;  
  9.     }  
  10.     return count;  
  11. }  
  12. int main()  
  13. {  
  14.     long long int n,i,count;  
  15.     while(scanf("%lld",&n) != EOF){  
  16.         count = 0;  
  17.         for(i = 1;i <= n;i++){  
  18.             count += Count(i);  
  19.         }  
  20.         printf("%lld\n",count);  
  21.     }  
  22.     return 0;  
  23. }  
这个方法虽然很容易想,但是不是一个好方法。致命问题就是效率问题。如果给定的N很大,需要很长时间才能得出计算结果。


解法二:

分析的出规律。

<1>1位数情况

这个简单,如果N = 3,那么从1到3的所有数字:1,2,3,只有个位数出现1,而且只出现一次。可以发现,N是个位数时,N >=1,那么f(N)= 1;N = 0,f(N)= 0;

<2>2位数情况


<3>3位数情况



同理分析4位数,5位数。。。。。

设N = abcde ,其中abcde分别为十进制中各位上的数字。

如果要计算百位上1出现的次数,它要受到3方面的影响:百位上的数字,百位一下(低位)上的数字,百位一上(高位)上的数字

如果百位上数字为0,百位上可能出现1的次数由更高位决定。比如:12013,则可以知道百位出现1的情况可能是:100~199,1100~1199,2100~2199,,.........,11100~11199,一共1200个。可以看出是由更高位数字(12)决定,并且等于更高位数字(12)乘以 当前位数(100)。

如果百位上数字为1,百位上可能出现1的次数不仅受更高位影响还受低位影响。比如:12113,则可以知道百位受高位影响出现的情况是:100~199,1100~1199,2100~2199,,.........,11100~11199,一共1200个。和上面情况一样,并且等于更高位数字(12)乘以 当前位数(100)。但同时它还受低位影响,百位出现1的情况是:12100~12113,一共114个,等于低位数字(113)+1。

如果百位上数字大于1(2~9),则百位上出现1的情况仅由更高位决定,比如12213,则百位出现1的情况是:100~199,1100~1199,2100~2199,...........,11100~11199,12100~12199,一共有1300个,并且等于更高位数字+1(12+1)乘以当前位数(100)。

[cpp]  view plain copy
  1. /*N = abcde 百位上数字是c 
  2. 仅以求百位上出现1的情况为例。 
  3. */  
  4. int count = 0;  
  5. //百位上数字为0,百位上可能出现1的次数由更高位决定  
  6. if(c == 0){  
  7.     //等于更高位数字(ab)* 当前位数(100)  
  8.     count += ab*100;  
  9. }  
  10. //百位上数字为1,百位上可能出现1的次数不仅受更高位影响还受低位影响  
  11. else if(c == 1){  
  12.     //更高位数字(ab) *  当前位数(100) + 低位数字(de)+1  
  13.     count += ab*100 + de + 1;  
  14. }  
  15. //百位上数字大于1(2~9),百位上出现1的情况仅由更高位决定  
  16. else{  
  17.     //(更高位数字+1(ab+1))* 当前位数(100)  
  18.     count += (ab + 1) * 100;  
  19. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值