如图
直接上代码
def _upsample_add(self, x, y):
_,_,H,W = y.size()
# 使用 双线性插值bilinear对x进行上采样,之后与y逐元素相加
return F.upsample(x, size=(H,W), mode='bilinear') + y
def forward(self, x):
# Bottom-up 自底向上 conv -> batchnmorm -> relu ->maxpool
c1 = F.relu(self.bn1(self.conv1(x)))
c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1)
# resnet网络
c2 = self.layer1(c1)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
# Top-down 自顶向下并与侧边相连
p5 = self.toplayer(c5) #1*1 卷积减少通道数
p4 = self._upsample_add(p5, self.latlayer1(c4))
p3 = self._upsample_add(p4, self.latlayer2(c3))
p2 = self._upsample_add(p3, self.latlayer3(c2))
# Smooth 平滑层(在融合之后还会再采用3*3的卷积核对每个融合结果进行卷积,目的是消除上
采样的混叠效应)
p4 = self.smooth1(p4)
p3 = self.smooth2(p3)
p2 = self.smooth3(p2)
return p2, p3, p4, p5
##self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
##self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
##self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)