洛谷P3172 [CQOI2015]选数(莫比乌斯反演+杜教筛)

本文深入探讨了杜教筛算法在求解莫比乌斯函数前缀和的应用,通过代码实现展示了如何高效计算较大范围内的莫比乌斯函数值。文章还介绍了如何使用莫比乌斯反演简化复杂问题,并给出了一段完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘛,主要是为了学杜教筛
然后发现其实可以背板子?
莫比乌斯函数前缀和
μ(i)=1−∑j=2nμ([ij])\mu(i)=1-\sum_{j=2}^n\mu([\frac{i}{j}])μ(i)=1j=2nμ([ji])
欧拉函数前缀和
ϕ(i)=i∗(i+1)2−∑j=2nϕ([ij])\phi(i)=\frac{i*(i+1)}{2}-\sum_{j=2}^n\phi([\frac{i}{j}])ϕ(i)=2i(i+1)j=2nϕ([ji])

那么就假装会用杜教筛求比较大的莫比乌斯函数的前缀和了

这个时候愉快地用莫比乌斯反演推出公式
ans=∑i=1h/kμ(i)f(i)ans=\sum_{i=1}^{h/k}\mu(i)f(i)ans=i=1h/kμ(i)f(i)
f(i)=(hi−l−1i)nf(i)={(\frac{h}{i}-\frac{l-1}{i})}^nf(i)=(ihil1)n
整除分块一波就可以过了

代码如下:

#include<bits/stdc++.h>
#define N 2000010
#define mod 1000000007
using namespace std;

int vis[N],p[N],mu[N];
int n,k,g,h,cnt;
map<int,int> m;

int init()
{
	vis[1]=1;
	mu[1]=1;
	for(int i=2;i<N;i++)
	{
		if(!vis[i])
		{
			mu[i]=-1;
			p[++cnt]=i;
		}
		for(int j=1;j<=cnt;j++)
		{
			if(p[j]*i>=N) break;
			vis[i*p[j]]=1;
			if(!(i%p[j]))
			{
				mu[i*p[j]]=0;
				break;
			}
			else
			{
				mu[i*p[j]]=-mu[i];
			}
		}
	}
}

long long kasumi(long long a,long long b)
{
	long long ans=1ll;
	while(b)
	{
		if(b&1) ans=a*ans%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}

long long solve(long long x)
{
	if(x<N) return mu[x];
	if(m.count(x)) return m[x];
	long long res=0,lim=sqrt(x);
	for(int i=2;x/i>lim;i++)
	{
		res+=solve(x/i);
	}
	for(int i=lim;i>=1;i--)
	{
		res+=(x/i-x/(i+1))*solve(i);
	}
	m[x]=1-res;
	return 1-res;
}

int main()
{
	init();
	for(int i=1;i<N;i++)
	{
		mu[i]+=mu[i-1];
	}
	scanf("%d%d%d%d",&n,&k,&g,&h);
	g--;
	long long ans=0;
	g/=k;
	h/=k;
	int l,r;
	for(l=1,r;l<=max(g,h);l=r+1)
	{
		if(g<l) break;
		r=min(h/(h/l),g/(g/l));
		ans+=1ll*(solve(r)-solve(l-1)) *kasumi(h/l-g/l,n)%mod;
		ans=(ans+mod)%mod;
	}
	for(;l<=h;l=r+1)
	{
		r=h/(h/l);
		ans+=1ll*(solve(r)-solve(l-1))*kasumi(h/l,n)%mod;
		ans=(ans+mod)%mod;
	}
	printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值