这篇博客主要根据一次作业来总结r语言进行回归分析的步骤,真的是好记忆不如“烂笔头”??长时间不用就会忘记。
回归方程:
r语言进行回归分析时,可以使用lm()函数进行;
#使用r语言进行回归和区间估计;
x<-c(0.25,0.37,0.44,0.55,0.60,0.62,0.68,
0.70,0.73,0.75,0.82,0.84)
y<-c(2.57,2.31,2.12,1.92,1.75,1.71,1.60,
1.51,1.53,1.41,1.33,1.31)
df<-data.frame(x=x,y=y)
#使用lm函数进行回归;
mylm<-lm(y~x,data=df)
#查看回归情况;
summary(mylm)
结果:
Call:
lm(formula = y ~ x, data = df)
Residuals:
Min 1Q Median 3Q Max
-0.053728 -0.030345 0.005332 0.027644 0.053641
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.10057 0.03863 80.27 2.20e-15 ***
x -2.19549 0.06066 -36.19 6.16e-12 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.03659 on 10 degrees of freedom
Multiple R-squared: 0.9924, Adjusted R-squared: 0.991