IDEA MAVEN SPARK SCALA打包办法

采用jar提交集群模式流程为:

本地完成代码开发 –> 本地编译打包 -> 提交集群执行

创建三层包

需要先创建三层package(eg:cn.nokia.bigdata),然后在package下创建object,如下图


Paste_Image.png

稍微修改了下官方例子

package cn.nokia.bigdata

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
// $example off$

object Test {

  def main(args: Array[String]): Unit = {
    // val conf = new SparkConf().setAppName("LogisticRegressionWithLBFGSExample")

    val conf = new SparkConf().setAppName("LogisticRegressionWithLBFGSExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // $example on$
    // Load training data in LIBSVM format.
    //val data = MLUtils.loadLibSVMFile(sc, "file:///usr/local/spark-2.1.0/data/mllib/sample_libsvm_data.txt")

    val data = MLUtils.loadLibSVMFile(sc, "D:\\spark\\data\\mllib\\sample_libsvm_data.txt")
    // Split data into training (60%) and test (40%).
    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)

    // Run training algorithm to build the model
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(10)
      .run(training)

    // Compute raw scores on the test set.
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    // Get evaluation metrics.
    val metrics = new MulticlassMetrics(predictionAndLabels)
    val accuracy = metrics.accuracy
    println(s"Accuracy = $accuracy")

    // Save and load model
    model.save(sc, "target/tmp/scalaLogisticRegressionWithLBFGSModl")
    val sameModel = LogisticRegressionModel.load(sc,
      "target/tmp/scalaLogisticRegressionWithLBFGSModel")
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println

当前项目结构


Paste_Image.png

打开项目结构

File -> Project Structure:


Paste_Image.png


快捷按钮


Paste_Image.png

artifact => + => jar


Paste_Image.png

选择主类:


Paste_Image.png

输出设置


Paste_Image.png

编译


Paste_Image.png

Paste_Image.png
  • build(首次打包)
  • rebuild(重新打包)
  • clean(清理当前内容)

    打包完后,可以在如下目录中找到对应jar包:


Paste_Image.png

本地提交

D:\spark\bin>spark-submit --class cn.nokia.bigdata.Test spark.jar local

Paste_Image.png

Paste_Image.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值