思路: 强连通分量题的老套路:求分量,缩点图,输出DAG的相关信息.
该题的答案就是那些DAG中出度为0的点 所代表的分量中包含的所有点.
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
#include <stack>
using namespace std;
#define maxn 10000+100
#define LL long long
int cas=1,T;
vector<int>G[maxn];
int pre[maxn];
int lowlink[maxn];
int sccno[maxn];
int num[maxn]; //在i编号scc中有多少个点
int dfs_clock,scc_cnt;
int n,m;
stack<int>S;
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for (int i = 0;i<G[u].size();i++)
{
int v = G[u][i];
if (!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u],lowlink[v]);
}
else if (!sccno[v])
{
lowlink[u] = min (lowlink[u],pre[v]);
}
}
if (lowlink[u] == pre[u])
{
scc_cnt++;
for (;;)
{
int x = S.top();S.pop();
sccno[x] = scc_cnt;
num[scc_cnt]++;
if (x==u)
break;
}
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(pre,0,sizeof(pre));
for (int i = 1;i<=n;i++)
if (!pre[i])
dfs(i);
}
int in[maxn];
int out[maxn];
int main()
{
//freopen("in","r",stdin);
while (scanf("%d",&n)==1 && n)
{
scanf("%d",&m);
for (int i = 0;i<=n;i++)
G[i].clear();
memset(out,0,sizeof(out));
memset(num,0,sizeof(num));
for (int i = 1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
find_scc(n);
for (int i = 1;i<=scc_cnt;i++)
{
out[i]=true;
}
for (int u = 1;u<=n;u++)
for (int i =0;i<G[u].size();i++)
{
int v = G[u][i];
if (sccno[u] != sccno[v])
out[sccno[u]]=false;
}
int b=0;
int flag = 1;
for (int i = 1;i<=n;i++)
{
if (out[sccno[i]])
{
if (flag)
printf("%d",i),flag=0;
else
printf(" %d",i);
}
}
puts("");
}
return 0;
}