什么是low-level、high-level任务

本文探讨了低级图像处理任务(如超分辨率和去噪)面临的泛化性、指标与主观感受的差距以及运算量过大等问题。同时,也指出在现实应用中,高质量图像处理在分类、检测等高级任务上的性能下降。为解决这些问题,提出了直接在降质图像上微调、独立网络增强与高层模型结合以及联合训练等融合策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Low-level任务:常见的包括 Super-Resolution,denoise, deblur, dehze, low-light enhancement, deartifacts等。简单来说,是把特定降质下的图片还原成好看的图像,现在基本上用end-to-end的模型来学习这类 ill-posed问题的求解过程,客观指标主要是PSNR,SSIM,大家指标都刷的很高。目前面临以下几点问题:

  • 泛化性差,换个数据集,同种任务变现就很差
  • 客观指标与主观感受存在,GAP,指标刷很高,人眼观感不佳,用GAN可缓解
  • 落地的问题,SOTA模型运算量很(上百G Flops),但实际不可能这么用
  • 主要是为人眼服务,缺乏与High-level之间的联系

High-level任务:分类,检测,分割等。一般公开训练数据都是高品质的图像,当送入降质图像时,性能会有下降,即使网络已经经过大量的数据增强(形状,亮度,色度等变换)

真实应用场景是不可能像训练集那样完美的,采集图像的过程中会面临各种降质问题,需要两者来结合。简单来说,结合的方式分为以下几种

  • 直接在降质图像上fine-tuning
  • 先经过low-level的增强网络,再送入High-level的模型,两者分开训练
  • 将增强网络和高层模型(如分类)联合训练
### Event-Based Image Low-Level Processing Techniques Event-based cameras represent a significant shift from traditional frame-based sensors by capturing asynchronous events triggered by changes in light intensity. These devices provide high temporal resolution and low latency data, making them suitable for real-time applications such as robotics and augmented reality. In event-based image processing, several key techniques are employed to handle the unique characteristics of this type of sensor output: #### 1. Event Filtering and Denoising Events generated by these cameras can be noisy due to various factors including environmental lighting conditions or hardware limitations. Advanced filtering algorithms aim at removing noise while preserving important features. For instance, bilateral filters have been adapted specifically for use with event streams[^1]. ```python import numpy as np def bilateral_filter(events, sigma_spatial=0.5, sigma_intensity=0.1): filtered_events = [] for e in events: weight_sum = value_sum = 0 for neighbor in get_neighbors(e): spatial_dist = np.linalg.norm(neighbor.pos - e.pos) intensity_diff = abs(neighbor.intensity - e.intensity) w = np.exp(-spatial_dist**2 / (2*sigma_spatial**2)) * \ np.exp(-intensity_diff**2 / (2*sigma_intensity**2)) weight_sum += w value_sum += w * neighbor.value if weight_sum != 0: filtered_value = value_sum / weight_sum filtered_events.append(Event(pos=e.pos, timestamp=e.timestamp, polarity=int(filtered_value>0))) return filtered_events ``` #### 2. Frame Reconstruction One common task involves reconstructing conventional frames from raw event sequences. This process allows existing vision systems designed around standard imaging modalities to leverage information provided by event-driven sensors without requiring complete redesigns. Methods like backpropagation through time combined with recurrent neural networks facilitate efficient reconstruction tasks[^2]. #### 3. Feature Extraction Extracting meaningful descriptors directly from event clouds enables more robust object recognition under challenging scenarios where traditional methods may fail. Spatiotemporal interest points detected within dense event volumes serve as reliable landmarks that help maintain tracking accuracy even when subjects move rapidly across scenes.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值