InsightFace及其mxnet、tensorflow代码实现

本文深入解析了ArcFace人脸识别模型的损失函数原理,详细介绍了如何使用TensorFlow进行ArcFace损失函数的代码实现。ArcFace通过调整余弦相似度的边际,提升了人脸识别的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

arcface论文:https://arxiv.org/pdf/1801.07698.pdf

说明文档:https://www.cnblogs.com/darkknightzh/p/8525287.html

tensorflow代码实现

参考流程图:

import tensorflow as tf
import math

#未考虑margin_b的情况,基本与下一个函数类似,可优先采用combine_loss_val,合理设置margin_a, #margin_m, margin_b, s四个参数即可

def arcface_loss(embedding, labels, w_init, out_num, s=64., m=0.5):
    '''
    :param embedding: the input embedding vectors
    :param labels:  the input labels, the shape should be eg: (batch_size, 1)
    :param s: scalar value default is 64
    :param out_num: output class num
    :param m: the margin value, default is 0.5
    :return: the final cacualted output, this output is send into the tf.nn.softmax directly
    '''
    cos_m = math.cos(m)
    sin_m = math.sin(m)
    with tf.variable_scope('arcface_loss'):
        # inputs and weights norm
        embedding_norm = tf.norm(embedding, axis=1, keep_dims=True)
        embedding = tf.div(embedding, embedding_norm, name='norm_embedding')
        weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num),
                                    initializer=w_init, dtype=tf.float32)
        weights_norm = tf.norm(weights, axis=0, keep_dims=True)
        weights_unit = tf.div(weights, weights_norm, name='norm_weights')
        # cos(theta+m)
        cos_t = tf.matmul(embedding, weights_unit, name='cos_t')

        cos_t2 = tf.square(cos_t, name='cos_2')
        sin_t2 = tf.subtract(1., cos_t2, name='sin_2')
        sin_t = tf.sqrt(sin_t2, name='sin_t')
        cos_mt = s * tf.subtract(tf.multiply(cos_t, cos_m), tf.multiply(sin_t, sin_m), name='cos_mt')

        mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask')
        # mask = tf.squeeze(mask, 1)
        inv_mask = tf.subtract(1., mask, name='inverse_mask')

        s_cos_t = tf.multiply(s, cos_t, name='scalar_cos_t')
        updated_logits = tf.add(tf.multiply(s_cos_t, inv_mask), tf.multiply(cos_mt, mask), name='arcface_loss_output')
        loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=updated_logits))
    return loss, weights


def combine_loss_val(embedding, labels, w_init, out_num, margin_a, margin_m, margin_b, s):
    '''
    This code is contributed by RogerLo. Thanks for you contribution.

    :param embedding: the input embedding vectors
    :param labels:  the input labels, the shape should be eg: (batch_size, 1)
    :param s: scalar value default is 64
    :param out_num: output class num
    :param m: the margin value, default is 0.5
    :return: the final cacualted output, this output is send into the tf.nn.softmax directly
    '''
    weights = tf.get_variable(name='embedding_weights', shape=(embedding.get_shape().as_list()[-1], out_num),
                                initializer=w_init, dtype=tf.float32)
    weights_unit = tf.nn.l2_normalize(weights, axis=0)
    embedding_unit = tf.nn.l2_normalize(embedding, axis=1) * s
    cos_t = tf.matmul(embedding_unit, weights_unit)
    ordinal = tf.constant(list(range(0, embedding.get_shape().as_list()[0])), tf.int64)
    ordinal_y = tf.stack([ordinal, labels], axis=1)
    sel_cos_t = tf.gather_nd(cos_t, ordinal_y)
    if margin_a != 1.0 or margin_m != 0.0 or margin_b != 0.0:
        if margin_a == 1.0 and margin_m == 0.0:
            s_m = s * margin_b
            new_zy = sel_cos_t - s_m
        else:
            cos_value = sel_cos_t / s
            t = tf.acos(cos_value)
            if margin_a != 1.0:
                t = t * margin_a
            if margin_m > 0.0:
                t = t + margin_m
            body = tf.cos(t)
            if margin_b > 0.0:
                body = body - margin_b
            new_zy = body * s
    updated_logits = tf.add(cos_t, tf.scatter_nd(ordinal_y, tf.subtract(new_zy, sel_cos_t), cos_t.get_shape()))
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=updated_logits))
    return loss, weights

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值