工业视觉 六 图像降噪及3D降噪

图像降噪的本质是:从图像中去掉无关的信号。

假设噪音性质:平均值为零;则可以对像素点周围像素取平均值。

降噪问题(这里只讨论additive noise),用最简单的数学语言一句话就可以描述清楚:

y = x + e

y是你观察到的带噪音的图像,e是噪音,x是干净无噪音的图像。只已知y,外加e的概率分布,降噪问题需要你去寻找最接近真实值的x。

 

一般图像去噪中常见的噪声有以下几种:

 加性噪声 、乘性噪声  、量化噪声  、“椒盐”噪声 、高斯噪声 及冲击噪声。

    根据噪声产生的来源,大致可以分为外部噪声和内部噪声两大类。

根据算法利用了什么图像性质,或者用到的手段,大概把各种算法分成如下几类:

  1. 滤波类
  2. 稀疏表达类
  3. 外部先验
  4. 聚类低秩
  5. 深度学习

了解算法详情,可在该链接中查看:https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值