Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
思路:动态规划法。和上一题想法一样,只是添加了一个二维数组的障碍的判断,初始化全为0状态,第1行和第1列遇到障碍后就都不能通过,但是后面的情况还可以绕过障碍。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size(),n=obstacleGrid[0].size();
vector<vector<int>>f(m,vector<int>(n));
if(obstacleGrid[0][0]) return 0;
for(int i=0;i<m;i++){
if(!obstacleGrid[i][0]){
f[i][0]=1;
}
else{
f[i][0]=0;
break;
}
}
for(int i=0;i<n;i++){
if(!obstacleGrid[0][i]){
f[0][i]=1;
}
else{
f[0][i]=0;
break;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(!obstacleGrid[i][j]){
f[i][j]=f[i-1][j]+f[i][j-1];
}
else{
f[i][j]=0;
}
}
}
return f[m-1][n-1];
}
};