转载https://blog.youkuaiyun.com/eson_15/article/details/51121833
上一章学习了Collection的架构,并阅读了部分源码,这一章开始,我们将对Collection的具体实现进行详细学习。首先学习List。而ArrayList又是List中最为常用的,因此本章先学习ArrayList。先对ArrayList有个整体的认识,然后学习它的源码,深入剖析ArrayList。
1. ArrayList简介
首先看看ArrayList与Collection的关系:
ArrayList的继承关系如下:
-
java.lang.Object
-
↳ java.util.AbstractCollection<E>
-
↳ java.util.AbstractList<E>
-
↳ java.util.ArrayList<E>
-
public class ArrayList<E> extends AbstractList<E>
-
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}
ArrayList继承了AbstractList,实现了List。它是一个数组队列,相当于动态数组。提供了相关的添加、删除、修改和遍历等功能。
ArrayList实现了RandomAccess接口,即提供了随机访问功能。RandomAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号来快速获取元素对象,这就是快速随机访问。下文会比较List的“快速随机访问”和使用“Iterator迭代器访问”的效率。
ArrayList实现了Cloneable接口,即覆盖了函数clone(),能被克隆。
ArrayList实现了java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。
和Vector不同,ArrayList中的操作是非线程安全的。所以建议在单线程中使用ArrayList,在多线程中选择Vector或者CopyOnWriteArrayList。
我们先总览下ArrayList的构造函数和API
-
/****************** ArrayList中的构造函数 ***************/
-
// 默认构造函数
-
ArrayList()
-
// capacity是ArrayList的默认容量大小。当由于增加数据导致容量不足时,容量会添加上一次容量大小的一半。
-
ArrayList(int capacity)
-
// 创建一个包含collection的ArrayList
-
ArrayList(Collection<? extends E> collection)
-
/****************** ArrayList中的API ********************/
-
// Collection中定义的API
-
boolean add(E object)
-
boolean addAll(Collection<? extends E> collection)
-
void clear()
-
boolean contains(Object object)
-
boolean containsAll(Collection<?> collection)
-
boolean equals(Object object)
-
int hashCode()
-
boolean isEmpty()
-
Iterator<E> iterator()
-
boolean remove(Object object)
-
boolean removeAll(Collection<?> collection)
-
boolean retainAll(Collection<?> collection)
-
int size()
-
<T> T[] toArray(T[] array)
-
Object[] toArray()
-
// AbstractCollection中定义的API
-
void add(int location, E object)
-
boolean addAll(int location, Collection<? extends E> collection)
-
E get(int location)
-
int indexOf(Object object)
-
int lastIndexOf(Object object)
-
ListIterator<E> listIterator(int location)
-
ListIterator<E> listIterator()
-
E remove(int location)
-
E set(int location, E object)
-
List<E> subList(int start, int end)
-
// ArrayList新增的API
-
Object clone()
-
void ensureCapacity(int minimumCapacity)
-
void trimToSize()
-
void removeRange(int fromIndex, int toIndex)
ArrayList包含了两个重要的对象:elementData和size。
elementData是Object[]类型的数组,它保存了添加到ArrayList中的元素。实际上,elementData是一个动态数组,我们能通过ArrayList(int initialCapacity)来执行它的初始容量为initialCapacity。如果通过不含参数的构造函数来创建ArrayList,则elementData是一个空数组(后面会调整其大小)。elementData数组的大小会根据ArrayList容量的增长而动态的增长,具体见下面的源码。
size则是动态数组实际的大小。
2. ArrayList源码分析(基于JDK1.7)
下面通过分析ArrayList的源码更加深入的了解ArrayList原理。由于ArrayList是通过数组实现的,所以源码比较容易理解:
-
package java.util;
-
public class ArrayList<E> extends AbstractList<E>
-
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
-
{
-
//序列版本号
-
private static final long serialVersionUID = 8683452581122892189L;
-
//默认初始化容量
-
private static final int DEFAULT_CAPACITY = 10;
-
//空数组,用来实例化不带容量大小的构造函数
-
private static final Object[] EMPTY_ELEMENTDATA = {};
-
//保存ArrayList中数据的数组
-
private transient Object[] elementData;
-
//ArrayList中实际数据的数量
-
private int size;
-
/******************************** Constructor ***********************************/
-
//ArrayList带容量大小的构造函数
-
public ArrayList(int initialCapacity) {
-
super();
-
if (initialCapacity < 0)
-
throw new IllegalArgumentException("Illegal Capacity: "+
-
initialCapacity);
-
this.elementData = new Object[initialCapacity]; //新建一个数组初始化elementData
-
}
-
//不带参数的构造函数
-
public ArrayList() {
-
super();
-
this.elementData = EMPTY_ELEMENTDATA;//使用空数组初始化elementData
-
}
-
//用Collection来初始化ArrayList
-
public ArrayList(Collection<? extends E> c) {
-
elementData = c.toArray(); //将Collection中的内容转换成数组初始化elementData
-
size = elementData.length;
-
// c.toArray might (incorrectly) not return Object[] (see 6260652)
-
if (elementData.getClass() != Object[].class)
-
elementData = Arrays.copyOf(elementData, size, Object[].class);
-
}
-
/********************************* Array size ************************************/
-
//重新“修剪”数组容量大小
-
public void trimToSize() {
-
modCount++;
-
//当ArrayList中的元素个数小于elementData数组大小时,重新修整elementData到size大小
-
if (size < elementData.length) {
-
elementData = Arrays.copyOf(elementData, size);
-
}
-
}
-
//给数组扩容,该方法是提供给外界调用的,是public的,真正扩容是在下面的private方法里
-
public void ensureCapacity(int minCapacity) {
-
int minExpand = (elementData != EMPTY_ELEMENTDATA)
-
// any size if real element table
-
? 0
-
// larger than default for empty table. It's already supposed to be
-
// at default size.
-
: DEFAULT_CAPACITY;
-
if (minCapacity > minExpand) {
-
ensureExplicitCapacity(minCapacity);
-
}
-
}
-
private void ensureCapacityInternal(int minCapacity) {
-
//如果是个空数组
-
if (elementData == EMPTY_ELEMENTDATA) {
-
//取minCapacity和10的较大者
-
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
-
}
-
//如果数组已经有数据了
-
ensureExplicitCapacity(minCapacity);
-
}
-
//确保数组容量大于ArrayList中元素个数
-
private void ensureExplicitCapacity(int minCapacity) {
-
modCount++; //将“修改统计数”+1
-
//如果实际数据容量大于数组容量,就给数组扩容
-
if (minCapacity - elementData.length > 0)
-
grow(minCapacity);
-
}
-
//分配的最大数组空间
-
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
-
//增大数组空间
-
private void grow(int minCapacity) {
-
// overflow-conscious code
-
int oldCapacity = elementData.length;
-
int newCapacity = oldCapacity + (oldCapacity >> 1); //在原来容量的基础上加上 oldCapacity/2
-
if (newCapacity - minCapacity < 0)
-
newCapacity = minCapacity; //最少保证容量和minCapacity一样
-
if (newCapacity - MAX_ARRAY_SIZE > 0)
-
newCapacity = hugeCapacity(minCapacity); //最多不能超过最大容量
-
// minCapacity is usually close to size, so this is a win:
-
elementData = Arrays.copyOf(elementData, newCapacity);
-
}
-
private static int hugeCapacity(int minCapacity) {
-
if (minCapacity < 0) // overflow
-
throw new OutOfMemoryError();
-
return (minCapacity > MAX_ARRAY_SIZE) ?
-
Integer.MAX_VALUE :
-
MAX_ARRAY_SIZE;
-
}
-
//返回ArrayList的实际大小
-
public int size() {
-
return size;
-
}
-
//判断ArrayList是否为空
-
public boolean isEmpty() {
-
return size == 0;
-
}
-
/****************************** Search Operations *************************/
-
//判断ArrayList是否包含Object o
-
public boolean contains(Object o) {
-
return indexOf(o) >= 0;
-
}
-
//正向查找,返回元素的索引值
-
public int indexOf(Object o) {
-
if (o == null) {
-
for (int i = 0; i < size; i++)
-
if (elementData[i]==null)
-
return i;
-
} else {
-
for (int i = 0; i < size; i++)
-
if (o.equals(elementData[i]))
-
return i;
-
}
-
return -1;
-
}
-
//反向查找,返回元素的索引值
-
public int lastIndexOf(Object o) {
-
if (o == null) {
-
for (int i = size-1; i >= 0; i--)
-
if (elementData[i]==null)
-
return i;
-
} else {
-
for (int i = size-1; i >= 0; i--)
-
if (o.equals(elementData[i]))
-
return i;
-
}
-
return -1;
-
}
-
/******************************* Clone *********************************/
-
//克隆函数
-
public Object clone() {
-
try {
-
@SuppressWarnings("unchecked")
-
ArrayList<E> v = (ArrayList<E>) super.clone();
-
//将当前ArrayList的全部元素拷贝到v中
-
v.elementData = Arrays.copyOf(elementData, size);
-
v.modCount = 0;
-
return v;
-
} catch (CloneNotSupportedException e) {
-
// this shouldn't happen, since we are Cloneable
-
throw new InternalError();
-
}
-
}
-
/********************************* toArray *****************************/
-
/**
-
* 返回一个Object数组,包含ArrayList中所有的元素
-
* toArray()方法扮演着array-based和collection-based API之间的桥梁
-
*/
-
public Object[] toArray() {
-
return Arrays.copyOf(elementData, size);
-
}
-
//返回ArrayList的模板数组
-
@SuppressWarnings("unchecked")
-
public <T> T[] toArray(T[] a) {
-
//如果数组a的大小 < ArrayList的元素个数,
-
//则新建一个T[]数组,大小为ArrayList元素个数,并将“ArrayList”全部拷贝到新数组中。
-
if (a.length < size)
-
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
-
//如果数组a的大小 >= ArrayList的元素个数,
-
//则将ArrayList全部拷贝到新数组a中。
-
System.arraycopy(elementData, 0, a, 0, size);
-
if (a.length > size)
-
a[size] = null;
-
return a;
-
}
-
/******************** Positional Access Operations ********************/
-
@SuppressWarnings("unchecked")
-
E elementData(int index) {
-
return (E) elementData[index];
-
}
-
//获取index位置的元素值
-
public E get(int index) {
-
rangeCheck(index); //首先判断index的范围是否合法
-
return elementData(index);
-
}
-
//将index位置的值设为element,并返回原来的值
-
public E set(int index, E element) {
-
rangeCheck(index);
-
E oldValue = elementData(index);
-
elementData[index] = element;
-
return oldValue;
-
}
-
//将e添加到ArrayList中
-
public boolean add(E e) {
-
ensureCapacityInternal(size + 1); // Increments modCount!!
-
elementData[size++] = e;
-
return true;
-
}
-
//将element添加到ArrayList的指定位置
-
public void add(int index, E element) {
-
rangeCheckForAdd(index);
-
ensureCapacityInternal(size + 1); // Increments modCount!!
-
//将index以及index之后的数据复制到index+1的位置往后,即从index开始向后挪了一位
-
System.arraycopy(elementData, index, elementData, index + 1,
-
size - index);
-
elementData[index] = element; //然后在index处插入element
-
size++;
-
}
-
//删除ArrayList指定位置的元素
-
public E remove(int index) {
-
rangeCheck(index);
-
modCount++;
-
E oldValue = elementData(index);
-
int numMoved = size - index - 1;
-
if (numMoved > 0)
-
//向左挪一位,index位置原来的数据已经被覆盖了
-
System.arraycopy(elementData, index+1, elementData, index,
-
numMoved);
-
//多出来的最后一位删掉
-
elementData[--size] = null; // clear to let GC do its work
-
return oldValue;
-
}
-
//删除ArrayList中指定的元素
-
public boolean remove(Object o) {
-
if (o == null) {
-
for (int index = 0; index < size; index++)
-
if (elementData[index] == null) {
-
fastRemove(index);
-
return true;
-
}
-
} else {
-
for (int index = 0; index < size; index++)
-
if (o.equals(elementData[index])) {
-
fastRemove(index);
-
return true;
-
}
-
}
-
return false;
-
}
-
//private的快速删除与上面的public普通删除区别在于,没有进行边界判断以及不返回删除值
-
private void fastRemove(int index) {
-
modCount++;
-
int numMoved = size - index - 1;
-
if (numMoved > 0)
-
System.arraycopy(elementData, index+1, elementData, index,
-
numMoved);
-
elementData[--size] = null; // clear to let GC do its work
-
}
-
//清空ArrayList,将全部元素置为null
-
public void clear() {
-
modCount++;
-
// clear to let GC do its work
-
for (int i = 0; i < size; i++)
-
elementData[i] = null;
-
size = 0;
-
}
-
//将集合C中所有的元素添加到ArrayList中
-
public boolean addAll(Collection<? extends E> c) {
-
Object[] a = c.toArray();
-
int numNew = a.length;
-
ensureCapacityInternal(size + numNew); // Increments modCount
-
//在原来数组的后面添加c中所有的元素
-
System.arraycopy(a, 0, elementData, size, numNew);
-
size += numNew;
-
return numNew != 0;
-
}
-
//从index位置开始,将集合C中所欲的元素添加到ArrayList中
-
public boolean addAll(int index, Collection<? extends E> c) {
-
rangeCheckForAdd(index);
-
Object[] a = c.toArray();
-
int numNew = a.length;
-
ensureCapacityInternal(size + numNew); // Increments modCount
-
int numMoved = size - index;
-
if (numMoved > 0)
-
//将index开始向后的所有数据,向后移动numNew个位置,给新插入的数据腾出空间
-
System.arraycopy(elementData, index, elementData, index + numNew,
-
numMoved);
-
//将集合C中的数据插到刚刚腾出的位置
-
System.arraycopy(a, 0, elementData, index, numNew);
-
size += numNew;
-
return numNew != 0;
-
}
-
//删除从fromIndex到toIndex之间的数据,不包括toIndex位置的数据
-
protected void removeRange(int fromIndex, int toIndex) {
-
modCount++;
-
int numMoved = size - toIndex;
-
System.arraycopy(elementData, toIndex, elementData, fromIndex,
-
numMoved);
-
// clear to let GC do its work
-
int newSize = size - (toIndex-fromIndex);
-
for (int i = newSize; i < size; i++) {
-
elementData[i] = null;
-
}
-
size = newSize;
-
}
-
//范围检测
-
private void rangeCheck(int index) {
-
if (index >= size)
-
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
-
}
-
//add和addAll方法中的范围检测
-
private void rangeCheckForAdd(int index) {
-
if (index > size || index < 0)
-
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
-
}
-
private String outOfBoundsMsg(int index) {
-
return "Index: "+index+", Size: "+size;
-
}
-
//删除ArrayList中所有集合C中包含的数据
-
public boolean removeAll(Collection<?> c) {
-
return batchRemove(c, false);
-
}
-
//删除ArrayList中除了集合C中包含的数据外的其他所有数据
-
public boolean retainAll(Collection<?> c) {
-
return batchRemove(c, true);
-
}
-
//批量删除
-
private boolean batchRemove(Collection<?> c, boolean complement) {
-
final Object[] elementData = this.elementData;
-
int r = 0, w = 0;
-
boolean modified = false;
-
try {
-
for (; r < size; r++)
-
if (c.contains(elementData[r]) == complement)
-
elementData[w++] = elementData[r];
-
} finally {
-
// Preserve behavioral compatibility with AbstractCollection,
-
// even if c.contains() throws.
-
//官方的注释是为了保持和AbstractCollection的兼容性
-
//我的理解是上面c.contains抛出了异常,导致for循环终止,那么必然会导致r != size
-
//所以0-w之间是需要保留的数据,同时从w索引开始将剩下没有循环的数据(也就是从r开始的)拷贝回来,也保留
-
if (r != size) {
-
System.arraycopy(elementData, r,
-
elementData, w,
-
size - r);
-
w += size - r;
-
}
-
//for循环完毕,检测了所有的元素
-
//0-w之间保存了需要留下的数据,w开始以及后面的数据全部清空
-
if (w != size) {
-
// clear to let GC do its work
-
for (int i = w; i < size; i++)
-
elementData[i] = null;
-
modCount += size - w;
-
size = w;
-
modified = true;
-
}
-
}
-
return modified;
-
}
-
/***************************** Writer and Read Object *************************/
-
//java.io.Serializable的写入函数
-
//将ArrayList的“容量、所有的元素值”都写入到输出流中
-
private void writeObject(java.io.ObjectOutputStream s)
-
throws java.io.IOException{
-
// Write out element count, and any hidden stuff
-
int expectedModCount = modCount;
-
s.defaultWriteObject();
-
// Write out size as capacity for behavioural compatibility with clone()
-
//写入“数组的容量”,保持与clone()的兼容性
-
s.writeInt(size);
-
//写入“数组的每一个元素”
-
for (int i=0; i<size; i++) {
-
s.writeObject(elementData[i]);
-
}
-
if (modCount != expectedModCount) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
//java.io.Serializable的读取函数:根据写入方式读出
-
private void readObject(java.io.ObjectInputStream s)
-
throws java.io.IOException, ClassNotFoundException {
-
elementData = EMPTY_ELEMENTDATA;
-
// Read in size, and any hidden stuff
-
s.defaultReadObject();
-
//从输入流中读取ArrayList的“容量”
-
s.readInt(); // ignored
-
if (size > 0) {
-
// be like clone(), allocate array based upon size not capacity
-
ensureCapacityInternal(size);
-
Object[] a = elementData;
-
//从输入流中将“所有元素值”读出
-
for (int i=0; i<size; i++) {
-
a[i] = s.readObject();
-
}
-
}
-
}
-
/******************************** Iterators ************************************/
-
/**
-
* 该部分的方法重写了AbstractList抽象类中Iterator部分的方法,因为ArrayList继承
-
* 了AbstractList,基本大同小异,只是这里针对本类的数组,思想与AbstractList一致
-
* 可以参照上一章Collection架构与源码分析的AbatractList部分
-
*/
-
public ListIterator<E> listIterator(int index) {
-
if (index < 0 || index > size)
-
throw new IndexOutOfBoundsException("Index: "+index);
-
return new ListItr(index);
-
}
-
public ListIterator<E> listIterator() {
-
return new ListItr(0);
-
}
-
public Iterator<E> iterator() {
-
return new Itr();
-
}
-
private class Itr implements Iterator<E> {
-
int cursor; // index of next element to return
-
int lastRet = -1; // index of last element returned; -1 if no such
-
int expectedModCount = modCount;
-
public boolean hasNext() {
-
return cursor != size;
-
}
-
@SuppressWarnings("unchecked")
-
public E next() {
-
checkForComodification();
-
int i = cursor;
-
if (i >= size)
-
throw new NoSuchElementException();
-
Object[] elementData = ArrayList.this.elementData;
-
if (i >= elementData.length)
-
throw new ConcurrentModificationException();
-
cursor = i + 1;
-
return (E) elementData[lastRet = i];
-
}
-
public void remove() {
-
if (lastRet < 0)
-
throw new IllegalStateException();
-
checkForComodification();
-
try {
-
ArrayList.this.remove(lastRet);
-
cursor = lastRet;
-
lastRet = -1;
-
expectedModCount = modCount;
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
final void checkForComodification() {
-
if (modCount != expectedModCount)
-
throw new ConcurrentModificationException();
-
}
-
}
-
private class ListItr extends Itr implements ListIterator<E> {
-
ListItr(int index) {
-
super();
-
cursor = index;
-
}
-
public boolean hasPrevious() {
-
return cursor != 0;
-
}
-
public int nextIndex() {
-
return cursor;
-
}
-
public int previousIndex() {
-
return cursor - 1;
-
}
-
@SuppressWarnings("unchecked")
-
public E previous() {
-
checkForComodification();
-
int i = cursor - 1;
-
if (i < 0)
-
throw new NoSuchElementException();
-
Object[] elementData = ArrayList.this.elementData;
-
if (i >= elementData.length)
-
throw new ConcurrentModificationException();
-
cursor = i;
-
return (E) elementData[lastRet = i];
-
}
-
public void set(E e) {
-
if (lastRet < 0)
-
throw new IllegalStateException();
-
checkForComodification();
-
try {
-
ArrayList.this.set(lastRet, e);
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
public void add(E e) {
-
checkForComodification();
-
try {
-
int i = cursor;
-
ArrayList.this.add(i, e);
-
cursor = i + 1;
-
lastRet = -1;
-
expectedModCount = modCount;
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
}
-
public List<E> subList(int fromIndex, int toIndex) {
-
subListRangeCheck(fromIndex, toIndex, size);
-
return new SubList(this, 0, fromIndex, toIndex);
-
}
-
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
-
if (fromIndex < 0)
-
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
-
if (toIndex > size)
-
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
-
if (fromIndex > toIndex)
-
throw new IllegalArgumentException("fromIndex(" + fromIndex +
-
") > toIndex(" + toIndex + ")");
-
}
-
private class SubList extends AbstractList<E> implements RandomAccess {
-
private final AbstractList<E> parent;
-
private final int parentOffset;
-
private final int offset;
-
int size;
-
SubList(AbstractList<E> parent,
-
int offset, int fromIndex, int toIndex) {
-
this.parent = parent;
-
this.parentOffset = fromIndex;
-
this.offset = offset + fromIndex;
-
this.size = toIndex - fromIndex;
-
this.modCount = ArrayList.this.modCount;
-
}
-
public E set(int index, E e) {
-
rangeCheck(index);
-
checkForComodification();
-
E oldValue = ArrayList.this.elementData(offset + index);
-
ArrayList.this.elementData[offset + index] = e;
-
return oldValue;
-
}
-
public E get(int index) {
-
rangeCheck(index);
-
checkForComodification();
-
return ArrayList.this.elementData(offset + index);
-
}
-
public int size() {
-
checkForComodification();
-
return this.size;
-
}
-
public void add(int index, E e) {
-
rangeCheckForAdd(index);
-
checkForComodification();
-
parent.add(parentOffset + index, e);
-
this.modCount = parent.modCount;
-
this.size++;
-
}
-
public E remove(int index) {
-
rangeCheck(index);
-
checkForComodification();
-
E result = parent.remove(parentOffset + index);
-
this.modCount = parent.modCount;
-
this.size--;
-
return result;
-
}
-
protected void removeRange(int fromIndex, int toIndex) {
-
checkForComodification();
-
parent.removeRange(parentOffset + fromIndex,
-
parentOffset + toIndex);
-
this.modCount = parent.modCount;
-
this.size -= toIndex - fromIndex;
-
}
-
public boolean addAll(Collection<? extends E> c) {
-
return addAll(this.size, c);
-
}
-
public boolean addAll(int index, Collection<? extends E> c) {
-
rangeCheckForAdd(index);
-
int cSize = c.size();
-
if (cSize==0)
-
return false;
-
checkForComodification();
-
parent.addAll(parentOffset + index, c);
-
this.modCount = parent.modCount;
-
this.size += cSize;
-
return true;
-
}
-
public Iterator<E> iterator() {
-
return listIterator();
-
}
-
public ListIterator<E> listIterator(final int index) {
-
checkForComodification();
-
rangeCheckForAdd(index);
-
final int offset = this.offset;
-
return new ListIterator<E>() {
-
int cursor = index;
-
int lastRet = -1;
-
int expectedModCount = ArrayList.this.modCount;
-
public boolean hasNext() {
-
return cursor != SubList.this.size;
-
}
-
@SuppressWarnings("unchecked")
-
public E next() {
-
checkForComodification();
-
int i = cursor;
-
if (i >= SubList.this.size)
-
throw new NoSuchElementException();
-
Object[] elementData = ArrayList.this.elementData;
-
if (offset + i >= elementData.length)
-
throw new ConcurrentModificationException();
-
cursor = i + 1;
-
return (E) elementData[offset + (lastRet = i)];
-
}
-
public boolean hasPrevious() {
-
return cursor != 0;
-
}
-
@SuppressWarnings("unchecked")
-
public E previous() {
-
checkForComodification();
-
int i = cursor - 1;
-
if (i < 0)
-
throw new NoSuchElementException();
-
Object[] elementData = ArrayList.this.elementData;
-
if (offset + i >= elementData.length)
-
throw new ConcurrentModificationException();
-
cursor = i;
-
return (E) elementData[offset + (lastRet = i)];
-
}
-
public int nextIndex() {
-
return cursor;
-
}
-
public int previousIndex() {
-
return cursor - 1;
-
}
-
public void remove() {
-
if (lastRet < 0)
-
throw new IllegalStateException();
-
checkForComodification();
-
try {
-
SubList.this.remove(lastRet);
-
cursor = lastRet;
-
lastRet = -1;
-
expectedModCount = ArrayList.this.modCount;
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
public void set(E e) {
-
if (lastRet < 0)
-
throw new IllegalStateException();
-
checkForComodification();
-
try {
-
ArrayList.this.set(offset + lastRet, e);
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
public void add(E e) {
-
checkForComodification();
-
try {
-
int i = cursor;
-
SubList.this.add(i, e);
-
cursor = i + 1;
-
lastRet = -1;
-
expectedModCount = ArrayList.this.modCount;
-
} catch (IndexOutOfBoundsException ex) {
-
throw new ConcurrentModificationException();
-
}
-
}
-
final void checkForComodification() {
-
if (expectedModCount != ArrayList.this.modCount)
-
throw new ConcurrentModificationException();
-
}
-
};
-
}
-
public List<E> subList(int fromIndex, int toIndex) {
-
subListRangeCheck(fromIndex, toIndex, size);
-
return new SubList(this, offset, fromIndex, toIndex);
-
}
-
private void rangeCheck(int index) {
-
if (index < 0 || index >= this.size)
-
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
-
}
-
private void rangeCheckForAdd(int index) {
-
if (index < 0 || index > this.size)
-
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
-
}
-
private String outOfBoundsMsg(int index) {
-
return "Index: "+index+", Size: "+this.size;
-
}
-
private void checkForComodification() {
-
if (ArrayList.this.modCount != this.modCount)
-
throw new ConcurrentModificationException();
-
}
-
}
-
}
总结一下:
1). ArrayList实际上是通过一个数组去保存数据的,当我们构造ArrayList时,如果使用默认构造函数,最后ArrayList的默认容量大小是10。
2). 当ArrayList容量不足以容纳全部元素时,ArrayList会自动扩张容量,新的容量 = 原始容量 + 原始容量 / 2。
3). ArrayList的克隆函数,即是将全部元素克隆到一个数组中。
4. ArrayList实现java.io.Serializable的方式。当写入到输出流时,先写入“容量”,再依次写出“每一个元素”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
3. ArrayList遍历方式
ArrayList支持三种遍历方式,下面我们逐个讨论:
1). 通过迭代器遍历。即Iterator迭代器。
-
Integer value = null;
-
Iterator it = list.iterator();
-
while (it.hasNext()) {
-
value = (Integer)it.next();
-
}
2). 随机访问,通过索引值去遍历。由于ArrayList实现了RandomAccess接口,所以它支持通过索引值去随机访问元素。
-
Integer value = null;
-
int size = list.size();
-
for (int i = 0; i < size; i++) {
-
value = (Integer)list.get(i);
-
}
3). 通过for循环遍历。
-
Integer value = null;
-
for (Integer integ : list) {
-
value = integ;
-
}
下面写了一个测试用例,比较这三种遍历方式的效率:
-
import java.util.*;
-
/*
-
* @description ArrayList三种遍历方式效率的测试
-
* @author eson_15
-
*/
-
public class ArrayListRandomAccessTest {
-
public static void main(String[] args) {
-
List<Integer> list = new ArrayList<Integer>();
-
for (int i=0; i<500000; i++)
-
list.add(i);
-
isRandomAccessSupported(list);//判断是否支持RandomAccess
-
iteratorThroughRandomAccess(list) ;
-
iteratorThroughIterator(list) ;
-
iteratorThroughFor(list) ;
-
}
-
private static void isRandomAccessSupported(List<Integer> list) {
-
if (list instanceof RandomAccess) {
-
System.out.println("RandomAccess implemented!");
-
} else {
-
System.out.println("RandomAccess not implemented!");
-
}
-
}
-
public static void iteratorThroughRandomAccess(List<Integer> list) {
-
long startTime;
-
long endTime;
-
startTime = System.currentTimeMillis();
-
for (int i=0; i<list.size(); i++) {
-
list.get(i);
-
}
-
endTime = System.currentTimeMillis();
-
long interval = endTime - startTime;
-
System.out.println("RandomAccess遍历时间:" + interval+" ms");
-
}
-
public static void iteratorThroughIterator(List<Integer> list) {
-
long startTime;
-
long endTime;
-
startTime = System.currentTimeMillis();
-
for(Iterator<Integer> it = list.iterator(); it.hasNext(); ) {
-
it.next();
-
}
-
endTime = System.currentTimeMillis();
-
long interval = endTime - startTime;
-
System.out.println("Iterator遍历时间:" + interval+" ms");
-
}
-
@SuppressWarnings("unused")
-
public static void iteratorThroughFor(List<Integer> list) {
-
long startTime;
-
long endTime;
-
startTime = System.currentTimeMillis();
-
for(Object obj : list)
-
;
-
endTime = System.currentTimeMillis();
-
long interval = endTime - startTime;
-
System.out.println("For循环遍历时间:" + interval+" ms");
-
}
-
}
每次执行的结果会有一点点区别,在这里我统计了6次执行结果,见下表:
|
RandomAccess(ms) |
Iterator(ms) |
For(ms) |
第一次 |
5 |
8 |
7 |
第二次 |
4 |
7 |
7 |
第三次 |
5 |
8 |
10 |
第四次 |
5 |
7 |
6 |
第五次 |
5 |
8 |
7 |
第六次 |
5 |
7 |
6 |
平均 |
4.8 |
7.5 |
7.1 |
由此可见,遍历ArrayList时,使用随机访问(即通过索引号访问)效率最高,而使用迭代器的效率最低。
4. toArray()异常问题
当我们调用ArrayList中的toArray()方法时,可能会遇到"java.lang.ClassCastException"异常的情况,下面来讨论下出现的原因:
ArrayList中提供了2个toArray()方法:
-
Object[] toArray()
-
<T> T[] toArray(T[] contents)
调用toArray()函数会抛出"java.lang.ClassCastException"异常,但是调用toArray(T[] contents)能正常返回T[]。toArray()会抛出异常是因为toArray()返回的是Object[]数组,将Object[]转换为其它类型(比如将Object[]转换为Integer[])则会抛出"java.lang.ClassCastException"异常,因为java不支持向下转型。解决该问题的办法是调用<T> T[] toArray(T[] contents),而不是Object[] toArray()。
调用<T> T[] toArray(T[] contents)返回T[]可以通过以下几种方式实现:
-
// toArray(T[] contents)调用方式一
-
public static Integer[] vectorToArray1(ArrayList<Integer> v) {
-
Integer[] newText = new Integer[v.size()];
-
v.toArray(newText);
-
return newText;
-
}
-
// toArray(T[] contents)调用方式二。<span style="color:#FF6666;">最常用!</span>
-
public static Integer[] vectorToArray2(ArrayList<Integer> v) {
-
Integer[] newText = (Integer[])v.toArray(new Integer[v.size()]);
-
return newText;
-
}
-
// toArray(T[] contents)调用方式三
-
public static Integer[] vectorToArray3(ArrayList<Integer> v) {
-
Integer[] newText = new Integer[v.size()];
-
Integer[] newStrings = (Integer[])v.toArray(newText);
-
return newStrings;
-
}
三种方式都大同小异。
ArrayList源码就讨论这么多,如有错误,欢迎留言指正~