#encoding:utf-8
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/home/zhaohongjie/machine_learing_action/day3/MNIST_data", one_hot = True)
import tensorflow as tf
learning_rate = 0.001
training_epochs = 20
batch_size = 100
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_input = 784
n_classes = 10
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
def multiplayer_perception(x, weigths, biases):
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
out_layer = tf.matmul(layer_2,weights['out']) + biases['out']
return out_layer
weights = {
'h1' : tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2' : tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out' : tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1' : tf.Variable(tf.random_normal([n_hidden_1])),
'b2' : tf.Variable(tf.random_normal([n_hidden_2])),
'out' : tf.Variable(tf.random_normal([n_classes]))
}
pred = multiplayer_perception(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred, labels = y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost],feed_dict = {x : batch_x, y: batch_y})
avg_cost += c / total_batch
if epoch % display_step == 0:
print 'The round %d:' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)
print "END"
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "accuracy:",accuracy.eval({x:mnist.test.images, y:mnist.test.labels})
该示例来自于公司培训的老师,有些许改动,使程序可以跑得通,是4层神经网络。数据是经典的书籍集合MNIST,手写数字分类数据集。