# 'x' is [[1., 2.]
# [3., 4.]]
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1.5, 3.5] #指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
# [3., 4.]]
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1.5, 3.5] #指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
本文详细介绍了 TensorFlow 中 reduce_mean 函数的使用方法及参数意义。通过具体示例展示了如何利用该函数针对不同维度计算平均值,适用于深度学习与机器学习领域的开发者。
948

被折叠的 条评论
为什么被折叠?



