hdu5245——Joyful(概率论求期望)

本文介绍了一种通过概率计算来解决涂墙游戏中期望值的问题。具体地,文章详细阐述了如何利用逆事件求解每个小方块被涂色的概率,并最终得出整个涂墙过程中被涂色方块数目的期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Joyful

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1198    Accepted Submission(s): 528


Problem Description
Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to paint a wall that looks like an M×N matrix. The wall has M×N squares in all. In the whole problem we denotes (x,y) to be the square at the x-th row, y-th column. Once Sakura has determined two squares (x1,y1) and (x2,y2), she can use the magical tool to paint all the squares in the sub-matrix which has the given two squares as corners.

However, Sakura is a very naughty girl, so she just randomly uses the tool for K times. More specifically, each time for Sakura to use that tool, she just randomly picks two squares from all the M×N squares, with equal probability. Now, kAc wants to know the expected number of squares that will be painted eventually.
 

Input
The first line contains an integer T(T100), denoting the number of test cases.

For each test case, there is only one line, with three integers M,N and K.
It is guaranteed that 1M,N500, 1K20.
 

Output
For each test case, output ''Case #t:'' to represent the t-th case, and then output the expected number of squares that will be painted. Round to integers.
 

Sample Input
2 3 3 1 4 4 2
 

Sample Output
Case #1: 4 Case #2: 8
Hint
The precise answer in the first test case is about 3.56790123.
题意:一个大矩形由m*n个小方块组成,一个人每次选两个小方块,他可以对以这两个方块为顶点的矩形面积内的小方块上色,一共可选k次,现在求被上色的小方块数目的期望
分析:每个格子可以被重复选,因此可以把每一个小方块选不选当做一个独立事件,所以我们算出每个小方块对总期望的贡献值就行了,直接算不好算,考虑算每个小方块一次不被选的概率p,用逆事件求小方格被上色的概率,遍历所有方格,不妨以当前方格为中心,那么只有四种情况,被选的两个小方块之间的区域同在中心的上下左右,不过这样会重复,四个角的矩形区域相当于被算了两次,再把它们减掉一次,这样求出来的是当前点一次不会被上色的情况数,除以总情况数(m * n) *( m * n)就是当前方块一次不会被上色的概率,做k次方,就是k次这个方块都不被上色的概率,用1减则为选k次这个方块被上色的概率,只需要把每个方块选k次后被上色的概率累加即可,情况数中间可能会爆int,用double就行
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <cmath> #include <algorithm> #include <vector> #include <map> #include <string> #include <stack> using namespace std; typedef long long ll; #define PI 3.1415926535897932 #define E 2.718281828459045 #define INF 0xffffffff//0x3f3f3f3f #define mod 100 const int M=1005; ll n,m; int cnt; int sx,sy,sz; int mp[1000][1000]; int pa[M*10],rankk[M]; int head[M*6],vis[M*100]; int dis[M*100]; int prime[M*1000]; bool isprime[M*1000]; int lowcost[M],closet[M]; char st1[5050],st2[5050]; //int len[M*6]; typedef pair<int ,int> ac; int dp[55][55][55][55]; int has[1050000]; int month[13]= {0,31,59,90,120,151,181,212,243,273,304,334,0}; int dir[8][2]= {{0,1},{0,-1},{-1,0},{1,0},{1,1},{1,-1},{-1,1},{-1,-1}}; int main() {     int i,j,t;     ll k;     int cas=1;     double ans;     scanf("%d",&t);     while(t--)     {         scanf("%lld%lld%lld",&m,&n,&k);         double tol=1.0*(n*m)*(m*n);         ans=0.0;         for(i=1; i<=m; i++)         {             for(j=1; j<=n; j++)             {                 double tmp=0;                 tmp+=1.0*(i-1)*n*(i-1)*n+1.0*(j-1)*m*(j-1)*m+1.0*(m-i)*n*(m-i)*n+1.0*(n-j)*m*(n-j)*m;                 tmp-=1.0*(i-1)*(i-1)*(j-1)*(j-1)+1.0*(i-1)*(i-1)*(n-j)*(n-j)+1.0*(j-1)*(j-1)*(m-i)*(m-i)+1.0*(m-i)*(m-i)*(n-j)*(n-j);                 double p=1.0*tmp/tol;                 p=pow(p,k);                 ans+=(1.0-p);             }         }         printf("Case #%d: %d\n",cas++,(int)(ans+0.5));     }     return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值