sdut3257——Square Number(打表)

本文介绍了一道关于寻找整数数组中能构成平方数对的问题,提供了两种解题思路:通过预处理所有平方数并去除非平方因子的方法,以及分解质因数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Square Number

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description

In mathematics, a square number is an integer that is the square of an integer. In other words, it is the product of some integer with itself. For example, 9 is a square number, since it can be written as 3 * 3.

Given an array of distinct integers (a1, a2, ..., an), you need to find the number of pairs (ai, aj) that satisfy (ai * aj) is a square number.

Input

The first line of the input contains an integer T (1 ≤ T ≤ 20) which means the number of test cases.

Then T lines follow, each line starts with a number N (1 ≤ N ≤ 100000), then N integers followed (all the integers are between 1 and 1000000).

Output

For each test case, you should output the answer of each case.

Example Input
1   
5   
1 2 3 4 12
Example Output

2

去年做过的题,今年再做一遍,竟然卡在了平方数打表,早知道就直接分解质因数了...

题意:给你N个数,两两乘积有多少平方数。

思路比较好想,就是对每个数尽量的按平方数分解,或者分解质因子,然后再统计相同的余数有几对。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <stack>
using namespace std;
typedef long long ll;
#define PI 3.1415926535897932
#define E 2.718281828459045
#define INF 0xffffffff//0x3f3f3f3f
#define mod 1000000007

const int M=1005;
int n,m;
int cnt;
int sx,sy,sz;
int mp[1000][1000];
int pa[M*10],rankk[M];
int head[M*6],vis[M*100];
int dis[M*100];
int prime[100005];
bool isprime[100005];
int lowcost[M],closet[M];
char st1[5050],st2[5050];
int len[M*6];
typedef pair<int ,int> ac;
int dp[55][55][55][55];
int has[1050000];
int month[13]= {0,31,59,90,120,151,181,212,243,273,304,334,0};
int dir[8][2]= {{0,1},{0,-1},{-1,0},{1,0},{1,1},{1,-1},{-1,1},{-1,-1}};

void getpri()
{
    int i;
    int j;
    cnt=0;
    memset(isprime,false,sizeof(isprime));
    for(i=2; i<1001; i++)
    {
        if(!isprime[i])prime[cnt++]=i;
        for(j=0; j<cnt&&prime[j]*i<100001; j++)
        {
            isprime[i*prime[j]]=1;
            if(i%prime[j]==0)break;
        }
    }
}
int tol;
int squ[10005];
void getsqunum()
{
    tol=0;
    for(int i=2; i<1001; i++) //我一开始统计的范围过大,Wa声一片
    {
        if(!isprime[i])
            squ[tol++]=i*i;
    }
}
struct node
{
    int v,w;
    node(int vv,int ww)
    {
        v=vv;
        w=ww;
    }
};
vector<int> g[100005];
char str[10005];
int bit[50];

int main()
{
    int i,j,k,t;
    int u,v;
    int len;
    int a;
    getpri();
    getsqunum();
    scanf("%d",&t);
    while(t--)
    {
        int ans=0;
        memset(has,0,sizeof(has));
        scanf("%d",&n);
        for(i=0; i<n; i++)
        {
            scanf("%d",&a);
            for(j=0; j<tol; j++)
            {
                if(a%squ[j]==0)
                {
                    while(a%squ[j]==0)a/=squ[j];
                }
            }
            ans+=has[a];//统计值为余数(非平方数)的数字的个数
            has[a]++;//除去平方因数后的值 ,有多少个该平方因数的值就可以组成多少对(先ans+= 后has++ ans就代表对数)
        }
        printf("%d\n",ans);
    }
    return 0;
}

分解质因数版

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn  = 1000000 + 10;
bool isprime[maxn];
int prime[maxn];
int num[maxn/10];
int factor[maxn];
int k = 0 ;
void init(){
isprime[0]=1, isprime[1] =1;
for(int i=2;i<=sqrt((double)maxn);i++){ 
if(!isprime[i]){
prime[k++] = i;
for(int j = i*2;j<=maxn;j+=i)
isprime[j] = 1;
}
}
}
int main(){
int t;
init();
scanf("%d",&t);
while(t--){
long long  ans = 0;
int n;
memset(factor,0,sizeof(factor));
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&num[i]);
for(int i=0;i<n;i++){
int t = num[i];
int remain = 1;
for(int j = 0;j<k;j++){
int times = 0;
while(t % prime[j] == 0){
t/=prime[j];
times ++;
}
if(times & 1){ //如果是奇数个素因子
remain*=prime[j];
}
if( !isprime[t] || t == 1){ //如果
remain*=t;
break;
}
}
ans += factor[remain];
factor[remain]++;
}
printf("%lld\n",ans);
}
return 0;
}

其他扒人家的

#include <iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#define LL long long
#define MAX 1001000
using namespace std;
int a[MAX],flag[MAX];
bool visited[MAX];
int main()
{    
    int T,n,b;
    int num= 0;//计数器
    memset(visited,0,sizeof(visited));
    int m=sqrt(MAX+0.5);//素数筛选法将MAX之内素数的平方存入数组a[]
    for(int i=2;i<=m;i++)
        if(!visited[i])
    {
        a[num++]=i*i;
        for(int j=i*i;j<=MAX;j+=i)
            visited[j]=1;
    }
    
    
    cin>>T;
    while(T--)
    {
        memset(flag,0,sizeof(flag));
        cin>>n;
        for(int i=0;i<n;i++)
        {
            cin>>b;
            for(int j=0;a[j]<=b&&j<=num-1;j++)//将b分解为若干素数的2次幂的乘积。最后剩余部分记录入flag等待匹配
            {
                while(b % a[j] == 0)
                    b /= a[j];
            }
            flag[b]++;
        }
        
        
        LL ant = 0;
        for(int i=1;i<MAX;i++)
            ant += flag[i]*(flag[i]-1)/2;//flag[i]表示有flag[i]个数剩余部分为i,这些数可以进行两两匹配
        cout<<ant<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值