main方法:
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
for(int i =0;i<10000;i++){
int x=(int)(Math.random()*100);
list.add(x);
}
// 用list保证每个方法使用的数组一致
bubbleSort(list);
selectionSort(list);
insertionSort(list);
countingSort1(list);
countingSort2(list);
}
冒泡排序
通过不停的换位置,确定最大的一个数,然后再来一遍,确定倒数第二个数
public static void bubbleSort(ArrayList<Integer> list) {
int size=list.size();
Integer[] arr = (Integer[])list.toArray(new Integer[size]);;
int exchangeCount = 0;
long compareCount = 0;
long start = System.currentTimeMillis();
for (int i = 0; i < arr.length - 1; i++) {
compareCount++;
for (int j = 0; j < arr.length - 1 -i; j++) {
compareCount++;
compareCount++;
if (arr[j] > arr[j + 1]) {
exchangeCount++;
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
compareCount++;
}
compareCount++;
long end = System.currentTimeMillis();
System.out.println("冒泡排序---end:"+end);
System.out.println("冒泡排序");
System.out.println("冒泡排序---用时:end - start =" + (end - start));
System.out.println("冒泡排序---换位次数:" + exchangeCount);
System.out.println("冒泡排序---比较次数:" + compareCount);
// System.out.println("冒泡排序---" + Arrays.toString(arr));
}
选择排序
不停的比较,确定最小的数,然后从下一个开始,再找到最小的,作为第二个数
public static void selectionSort(ArrayList<Integer> list) {
int size=list.size();
Integer[] arr = (Integer[])list.toArray(new Integer[size]);;
int exchangeCount = 0;
int compareCount = 0;
long start = System.currentTimeMillis();
for (int i = 0; i < arr.length - 1; i++) {
compareCount++;
for (int j = i + 1; j < arr.length; j++) {
compareCount++;
compareCount++;
if (arr[i] > arr[j]) {
exchangeCount++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
compareCount++;
}
compareCount++;
long end = System.currentTimeMillis();
System.out.println("选择排序");
System.out.println("选择排序---用时:end - start =" + (end - start));
System.out.println("选择排序---换位次数:" + exchangeCount);
System.out.println("选择排序---比较次数:" + compareCount);
// System.out.println("选择排序---" + Arrays.toString(arr));
}
复杂度:
其实比较次数也是和冒泡一样——N*(N-1)/2。(N个元素)
但是交换的次数是少于N的,想想冒泡是每次比较完,是需要交换的,而选择只是最后一次。而所以选择排序比冒泡快,当然元素达到一定数量级的时候,速度就体现出来了。
插入排序
每次比较之后,都能保证前面的数据是有序的
public static void insertionSort(ArrayList<Integer> list) {
int size=list.size();
Integer[] arr = (Integer[])list.toArray(new Integer[size]);;
int exchangeCount = 0;
int compareCount = 0;
int temp;
int mark;
long start = System.currentTimeMillis();
for (int i = 1; i < arr.length; i++) {
compareCount++;
temp = arr[i];
mark = i;
while (mark > 0 && arr[mark - 1] > temp) {
compareCount++;
compareCount++;
exchangeCount++;
arr[mark] = arr[mark - 1];
mark--;
}
compareCount++;
arr[mark] = temp;
}
compareCount++;
long end = System.currentTimeMillis();
System.out.println("插入排序");
System.out.println("插入排序---用时:end - start =" + (end - start));
System.out.println("插入排序---换位次数:" + exchangeCount);
System.out.println("插入排序---比较次数:" + compareCount);
// System.out.println("插入排序---" + Arrays.toString(arr));
}
计数排序
public static void countingSort(ArrayList<Integer> list) {
int size=list.size();
Integer[] arr = (Integer[])list.toArray(new Integer[size]);;
int exchangeCount = 0;
int compareCount = 0;
long start = System.currentTimeMillis();
int max =100;
int[] arrays = new int[max];
for (int i = 0; i < arr.length; i++) {
compareCount++;
arrays[arr[i]]++;
}
compareCount++;
int index = 0;
for (int i = 0; i < arrays.length; i++) {
compareCount++;
// compareCount++;
// if (array[i] > 0) {
for (int j = index; j < index + arrays[i]; j++) {
compareCount++;
arr[j] = i;
exchangeCount++;
}
index += arrays[i];
compareCount++;
// }
}
compareCount++;
long end = System.currentTimeMillis();
System.out.println("计数排序");
System.out.println("计数排序---用时:end - start =" + (end - start));
System.out.println("计数排序---换位次数:" + exchangeCount);
System.out.println("计数排序---比较次数:" + compareCount);
// System.out.println("计数排序---" + Arrays.toString(arr));
}
结果对比:
冒泡排序
冒泡排序---用时:end - start =185
冒泡排序---换位次数:24564659
冒泡排序---比较次数:100009999
选择排序
选择排序---用时:end - start =71
选择排序---换位次数:9999
选择排序---比较次数:100009999
插入排序
插入排序---用时:end - start =52
插入排序---换位次数:24564659
插入排序---比较次数:49149317
计数排序
计数排序---用时:end - start =1
计数排序---换位次数:10000
计数排序---比较次数:20202
引用:
Java数据结构和算法(三)——简单排序 - iaiti的专栏 - 博客频道 - youkuaiyun.com
计数排序 - tanyujing的专栏 - 博客频道 - youkuaiyun.com