基于tsfresh包的单类时间序列特征提取

本文介绍了如何利用tsfresh库对单类时间序列数据,如苹果公司股票价格,进行特征提取和预测。通过滑动窗口技术创建训练数据样本,然后使用特征提取函数提取时间序列特征,最后用线性回归模型进行预测。这种方法适用于无多组实验数据的情况。

前言

时间序列特征提取包中tsfresh较为流行,但是其官方教程给出的例子是机器人故障的数据集,其中的id列为各组不同的实验。然后我就一直在想能否做单类的,比如电力预测,或者是某一条街道的交通预测,但是翻遍了文档都没找到,后来在github项目文件中找到了做单类预测的示例文件

我当时有这个想法的时候查过优快云上的其他有关tsfresh包的教程,大多都是搬运的官方文档的例子,没有单类预测的示例,下面我将结合代码,说明如何提取该类型的时间序列特征。

时序特征提取

导入必要包

import numpy as np
import pandas as pd
import matplotlib.pylab as plt

from tsfresh import extract_features, select_features
from tsfresh.utilities.dataframe_functions import roll_time_series, make_forecasting_frame
from tsfresh.utilities.dataframe_functions import impute

import pandas_datareader.data as web
from sklearn.linear_model import LinearRegression

准备数据集

  • 我们将使用苹果公司的股票价格来展示如何同时处理一个时间序列(一只股票)。
  • 我们从 "stooq "下载数据,只存储高值。
df = web.DataReader("AAPL", 'stooq')["High"]
print(df.shape)
df.head()

输出:

(1257,)
Date
2023-03-01    147.2285
2023-02-28    149.0800
2023-02-27    149.1700
2023-02-24    147.1900
2023-02-23    150.3400
Name: High, dtype: float64
  • 绘制图形观察
plt.figure(figsize=(15, 6))
df.plot(ax=plt.gca())
plt.show()

请添加图片描述

  • 整理数据集,添加标识符:
df_melted = pd.DataFrame({
   
   "high": df.copy()})
df_melted["date"] = df_melted.index
df_melted["Symbols"] = "AAPL"

df_melted.head()

输出:

	high	date	Symbols
Date			
2023-03-01	147.2285	2023-03-01	AAPL
2023-02-28	149.0800	2023-02-28	AAPL
2023-02-27	149.1700	2023-02-27	AAPL
2023-02-24	147.1900	2023-02-24	AAPL
2023-02-23	150.3400	2023-02-23	AAPL

创建训练数据样本

  • 预测通常包括以下步骤:
    • 收集到今天为止的的数据
    • 进行特征提取(例如,使用extract_features函数)
    • 训练一个预测模型
  • 然而在训练中,我们需要多个例子来训练。如果我们只使用到今天为止的时间序列,我们将只有一个训练实例。因此,我们使用了一个技巧:滑动历史窗口。
  • 想象一下有一个滑动的时间窗口在你的数据集上,在每个时间步长 t t t,你把窗口中的数据当作今天(包括 t t t)的数据来提取特征。直到时间 t t t的特征的目标是时间 t + 1 t+1 t
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值