题意:求2×106以内的质数的和。
分析:欧拉筛法即可。
#include <bits/stdc++.h>
#define ll long long
#define pii std::pair<int,int>
#define mp std::make_pair
#define fi first
#define se second
#define SZ(x) (int)(x).size()
#define pb push_back
template<class T>inline void chkmax(T &x, const T &y) {if(x < y) x = y;}
template<class T>inline void chkmin(T &x, const T &y) {if(x > y) x = y;}
template<class T>
inline void read(T &x) {
char c;int f = 1;x = 0;
while(((c=getchar()) < '0' || c > '9') && c != '-');
if(c == '-') f = -1;else x = c-'0';
while((c=getchar()) >= '0' && c <= '9') x = x*10+c-'0';
x *= f;
}
static int outn;
static char out[(int)2e7];
template<class T>
inline void write(T x) {
if(x < 0) out[outn++] = '-', x = -x;
if(x) {
static int tmpn;
static char tmp[20];
tmpn = 0;
while(x) tmp[tmpn++] = x%10+'0', x /= 10;
while(tmpn) out[outn++] = tmp[--tmpn];
}
else out[outn++] = '0';
}
const int N = 2e6;
int p[N + 9], pn;
bool is[N + 9];
inline void sieve(int n) {
for(int i = 2; i <= n; ++i) {
if(!is[i]) p[++pn] = i;
for(int j = 1; j <= pn && p[j] * i <= n; ++j) {
is[p[j] * i] = true;
if(i % p[j] == 0) break;
}
}
}
int main() {
sieve(N);
ll sum = 0;
for(int i = 1; i <= pn; ++i)
sum += p[i];
std::cout << sum << std::endl;
return 0;
}